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1 Introduction 

This document describes the data and methods underlying the recreational demand model 

(RDM) component of the MAFMC’s Management Strategy Evaluation (MSE) of the 

recreational summer flounder (fluke) fishery. As part of a fully integrated bio-economic model,1 

the RDM provides the key link between projected fluke population abundances, regulations, and 

expected recreational fishing mortality.  

 The RDM is a unique approach to evaluating the potential impact of alternative fluke 

management strategies on fishery-wide outcomes because it explicitly models the relationship 

between policy- or stock-induced changes in trip outcomes and angler behavior. As Fenichel et 

al (2013) note, angler behavior has important consequences on several aspects of the recreational 

fishing system, including the cumulative effect on fishing mortality and subsequent impacts to 

biomass. However, angler behavior is often neglected in the policymaking process (Beard et al. 

2011), which may lead to regulations that ineffectively meet management goals. In addition to 

measuring the likely effect of regulations on angler behavior and recreational fishing mortality, 

the RDM captures the economic implications of regulations in terms of changes in angler welfare 

and fishing trip expenditures, allowing for these metrics to be considered in the MSE. 

There are three main components of the RDM: an angler behavioral model, a calibration 

sub-model, and a projection sub-model. Each component is described in detail below. The angler 

behavioral model uses choice experiment survey data (Sections 2) to estimate angler preferences 

for harvesting and discarding fluke and other primary species (Sections 3 and 4). These estimates 

parameterize the calibration and projection sub-models and are also used to calculate behavioral 

and welfare responses to regulations (Section 5). The calibration sub-model, discussed in Section 

6, emulates coast-wide fishing activity in a baseline year using trip-level data and serves as a 

baseline to which we compare alternative management scenarios. The link between projected 

stock structures and angler catch is described in Section 7. The projection sub-model, described 

in Section 8, simulates the fishery conditional on a projected stock structure and management 

scenario and computes expected impacts to angler effort, angler welfare, the local economy, and 

recreational fishing mortality. Section 8.1 discusses the economic metrics captured by the RDM 

and Section 8.2 provides information about how alternative operating model assumptions enter 

 
1 For an overview of the integrated bio-economic model, please see the August 2022 Council meeting briefing book 
materials at: https://www.mafmc.org/briefing/august-2022.  

https://www.mafmc.org/briefing/august-2022


the RDM. We also the evaluate the out-of-sample predictive power of the RDM and provide 

these results in Section 8.3.   

 

2 Choice experiment survey 

Choice experiments (CEs) are a common stated-preference approach to non-market valuation 

and provide a means to estimate the value of goods and attributes that are not traded explicitly in 

a market and therefore lack prices to signal value (Adamowicz et al. 1998). Like other types of 

stated preferences methods, CEs rely on individuals’ responses to hypothetical questions and are 

particularly useful when revealed preference, i.e., observational data on actual human behavior is 

inadequate or non-existent. In the case of the summer flounder MSE, the CE approach allowed 

us to derive the marginal value of harvesting and discarding fluke and therefore estimate the 

economic implications of current and previously unobserved management scenarios that might 

affect angler harvest and discards.  

In a typical CE, respondents are presented with two or more hypothetical multi-attribute 

goods and asked to compare and choose their most preferred good. It is common for one attribute 

to represent the “price” of the good, defined in monetary (e.g., annual tax or one-time trip cost) 

or non-monetary units that can be monetized (e.g., travel distance) that provide a budget 

constraint to individuals’ purchasing decisions. Individuals are assumed to choose a good only 

when its benefit outweighs its cost and it provides maximum utility overall all available goods in 

a given choice scenario. The resulting data on individual purchasing decisions can be used to 

evaluate consumer preferences for, behavioral response to, and welfare impacts of marginal 

changes in attribute levels (Louiviere et al. 2000). In recreational fishing contexts, there have 

been numerous applications of CEs and other types of stated preference surveys seeking to 

evaluate the influence of catch and non-catch related attributes on angler choices (Hunt et al. 

2019). 

Our CE data come from an angler survey administered in 2010 as a follow-up to the 

Access Point Angler Intercept Survey (APAIS), an in-person survey that collects information 

from anglers at publicly accessible fishing sites as they complete their fishing trips. The APAIS 

is one of several surveys used by the Marine Recreational Information Program (MRIP) to 

produce catch and effort estimates for recreational marine species across the United States. 

Anglers who participated in the APAIS in coastal states from Maine to North Carolina during 



2010 were asked to participate in the voluntary follow-up CE survey. Those willing to participate 

were sent CE survey materials via mail or email shortly after the intercept interview. A total of 

10,244 choice experiment surveys were distributed, of which 3,234 were returned for an overall 

response rate of 31.5%.  

The survey instrument contained three sections. Section (A) collected information about 

respondents’ fishing experiences in the past year and species preferences, as well as the factors 

that influence their decision to fish. Section (B) contained a set of choice experiment questions 

(Figure 1). In these questions, respondents were presented with three hypothetical multi-attribute 

fishing trip options. Trip A and Trip B varied and contained different species-specific bag and 

size limits, catch and keep of fluke and other primary species, and total trip costs. Trip A 

provided a range for numbers of fluke caught and kept rather than single value as in Trip B. Trip 

C was an option to go fishing for other species and was added as an attempt to capture target 

species substitution. Respondents were asked to compare and choose their favorite among the 

three trip options or opt to not saltwater fish. Lastly, section (C) gathered demographic 

information including gender, birth year, education, ethnicity, and income. Given regional 

differences in species availability, survey versions were developed for four sub-regions: (i) 

coastal states from Maine through New York, (ii) New Jersey, (iii) Delaware and Maryland, and 

(iv) Virginia and North Carolina. The four survey versions differed in the species other than 

fluke and black sea bass included in Sections A and B.2  

 

2.1 Experimental design 

For each regional version of the survey, multiple sub-versions that differed in levels of the trip 

attributes shown within and across choice questions were administered. Trip attribute levels were 

chosen based on historical catch and trip expenditure data and corroborated with focus group 

feedback. They were then randomized across choice questions using an experimental design that 

sought to maximize the statistical efficiency of the ensuing model parameters. Each experimental 

design was specified to produce a total 128 choice questions. Because 128 is too many questions 

 
2 In terms of the CE attributes in Section B, the Maine to New York version included fluke, black sea bass, and scup; 
the New Jersey version included fluke, black sea bass, scup, and weakfish; the Delaware and Maryland version 
included fluke, black sea bass, and weakfish; and the Virginia and North Carolina version included fluke, black sea 
bass, weakfish, and red drum. 



for a single respondent to answer, questions were randomly allocated into 16 subsets such that 

each respondent was presented with eight choice questions. 

 

 

2.2 Choice experiment sample  

A total of 3,234 people completed or partially completed the mail or web version of the survey. 

Of these respondents, 2,941 answered at least one of the eight choice experiment questions. We 

removed from the sample respondents who universally choose the zero-cost, “Do not go 

saltwater fishing” option or the pelagic trip (Trip C) as their favorite trip following recommended 

Figure 1. Example choice experiment question from the New Jersey survey version. 



best practices in Johnston et al. (2017).3 We also excluded from the analysis respondents who 

indicated that the survey was not completed by the person to whom it was addressed. The 

remaining sample consisted of 2,448 anglers. 

Table 1 displays some demographic characteristics of sample anglers by region. Sample 

anglers were predominantly male (90-93% across regions) and Caucasian (94-96% across 

regions). The average age was just under 53. Roughly one quarter to one third of the sample in 

each region attained a bachelor’s degree or higher. Between 60% and 70% of the sample in each 

region had household incomes ranging from $20,000 to $100,000, while between 26% and 30% 

had household incomes above $100,000. Lastly, the average number of days spent fishing during 

the previous calendar year (2009) varied from 20 to 28 across regions, with New Jersey anglers 

fishing considerably more frequently in the past year than anglers in other regions.  

 

 

 

 

 Sample anglers were recruited from the APAIS, which occurs at publicly accessible 

fishing sites only. Anglers fishing from private access points were therefore excluded from the 

sampling design. To understand the extent to which each fishing mode is represented in our 

 
3 Key parameter estimates from choice models that included these participants were similar in sign, significance, and 
magnitude to those presented in this document.  

Table 1. Demographic characteristics of choice experiment sample. 

Characteristic 
ME-NY NJ DE/MD VA/NC 

% male 92.7 93.2 91.0 90.0 
% Caucasian 95.6 95.7 94.5 94.5 
Mean age 52.8 52.8 52.9 52.2 
Education     
   % with high school graduate or GED 33.1 42.4 43.7 28.8 
   % with some college but no degree or associate's degree 34.7 30.5 28.0 36.8 
   % with bachelor's degree or higher 32.1 27.0 28.2 34.2 
Household income      
   % less than $20,000 6.9 2.0 7.1 4.6 
   % between $20,000 and $100,000 62.7 69.5 67.0 69.0 
   % over $100,000 30.3 28.4 25.7 26.3 
Mean # fishing trips taken during 2009 21.1 27.7 18.6 20.1 



sample and how the distribution of fishing effort by mode aligns with the distribution of fishing 

effort in the population, Table 2 compares MRIP estimates of fishing effort for primary species 

by mode to the distribution of fishing effort indicated by our sample.4 Compared to the 

population, shore trips were underrepresented in the sample while party and charter boat trips 

were overrepresented. The percent of private boat trips in the sample closely matches the 

population and in both cases and accounts for the lion’s share of all trips. So while the sample 

did not mirror the population distribution of fishing effort by mode in 2009, it did  

 encompass directed effort from all four fishing modes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4 The survey asked anglers how many trips they took in 2009 for fluke, black sea bass, and either scup, weakfish, 
and/or red drum depending on the survey version.   

Table 2. Percent of trips taken for primary species by mode during 2009.  
 MRIP  CE sample 
ME-NY   
Shore 40.3 16.7 
Party boat 2.0 24.0 
Charter boat 1.5 4.0 
Private boat  56.2 55.3 
   
NJ   
Shore 34.9 22.6 
Party boat 2.1 21.8 
Charter boat 1.3 3.9 
Private boat  61.6 51.7 
   
DE/MD   
Shore 37.8 28.6 
Party boat 1.3 11.6 
Charter boat 0.9 4.4 
Private boat  60.0 55.4 
   
VA/NC   
Shore 46.4 30.6 
Party boat 0.1 3.6 
Charter boat 0.2 3.5 
Private boat  53.3 62.4 
Notes: Primary species include fluke and black sea and other species that varied by 
survey version: the ME-NY survey also included scup, the NJ version also 
included scup and weakfish, the DE/MD version also included weakfish, and the 
VA/NC also included weakfish and red drum. The MRIP columns shows 
percentages of all trips taken for the primary species, while the CE sample column 
shows percentages of all trips taken for the primary species as indicated by sample 
respondents.   



3 Behavioral model framework 

We analyzed our CE data using random utility models (McFadden 1973) , which decompose the 

overall utility angler 𝑛𝑛 receives from trip alternative 𝑗𝑗 (𝑗𝑗 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) into two 

components: 𝑉𝑉𝑛𝑛𝑛𝑛, a function that relates observed fishing trip attributes 𝑥𝑥𝑛𝑛𝑛𝑛 to utility, and 𝜀𝜀𝑛𝑛𝑛𝑛, a 

random component capturing the influence of all unobserved factors on utility. Angler utility can 

be expressed as 

 

𝑈𝑈𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑛𝑛𝑛𝑛 +  𝜀𝜀𝑛𝑛𝑛𝑛  
                                                                          = 𝛽𝛽𝑛𝑛′ 𝑥𝑥𝑛𝑛𝑛𝑛 +  𝜀𝜀𝑛𝑛𝑛𝑛,                                                     (1) 

 

where 𝛽𝛽𝑛𝑛′  is a vector of preference parameters measuring the part-worth contribution of trip 

attributes 𝑥𝑥 to angler 𝑛𝑛’s utility, and 𝜀𝜀𝑛𝑛𝑛𝑛 is an independent and identically distributed Type I 

extreme value error term. Under the random utility framework, an angler will select alternative 𝑖𝑖 

if it provides maximum utility over all alternatives available to him or her in a given choice 

occasion, i.e.  

 

𝑈𝑈𝑛𝑛𝑛𝑛 > 𝑈𝑈𝑛𝑛𝑛𝑛 ∀ 𝑗𝑗 ≠ 𝑖𝑖. (2) 
 

We estimated panel mixed logit models, which allow for unobserved preference heterogeneity—

a recommended best-practice for stated preference analysis (Johnston et al. 2017)—through 

estimation of parameter distributions for the attributes specified as random. Allowing preferences 

to vary across individuals is the primary advantage of the mixed logit over the basic multinomial 

logit (MNL) model, which assumes that individuals have the same preferences. Panel mixed 

logit estimation also resolves some behavioral limitations of the MNL model, including the 

independence of irrelevant alternatives property and the assumption that unobserved factors that 

influence decisions are uncorrelated over repeated choice situations (Hensher and Greene 2003). 

The probability that angler 𝑛𝑛 chooses alternative 𝑖𝑖 is obtained by integrating the logit formula 

over the density of 𝛽𝛽 (Train 2003): 

 

𝑃𝑃𝑛𝑛𝑛𝑛 = �
𝑒𝑒𝛽𝛽′𝑥𝑥𝑛𝑛𝑛𝑛

∑ 𝑒𝑒𝛽𝛽′𝑥𝑥𝑛𝑛𝑛𝑛𝐽𝐽
𝑗𝑗=1

𝑓𝑓(𝛽𝛽)𝑑𝑑𝑑𝑑. 

 

(3) 



 

These probabilities are approximated via simulation in which repeated draws of 𝛽𝛽 are taken 

from 𝑓𝑓(𝛽𝛽|𝜃𝜃), where 𝜃𝜃 refers to the mean and covariance of this distribution. For each draw, the 

logit formula is calculated for all choice scenarios (up to eight) faced by individual 𝑛𝑛. Then, the 

product of these calculations is taken, giving the joint probability of observing individual 𝑛𝑛’s 

sequence of choices. The average of these calculations over all draws is the simulated choice 

probability, 𝑃𝑃�𝑛𝑛𝑛𝑛. The estimated parameters are the values of 𝜃𝜃 that maximize the simulated log 

likelihood function,  

 

𝐿𝐿𝐿𝐿 = ���𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛ln(𝑃𝑃�𝑛𝑛𝑛𝑛𝑛𝑛),
𝐽𝐽

𝑗𝑗=1

𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑛𝑛=1

 

 

(4) 

 

where 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 1 if individual 𝑛𝑛 chose alternative 𝑗𝑗 in choice scenario 𝑡𝑡 and zero otherwise.  

We specified the utility associated with fishing trip alternatives A and B as a linear 

additive function of the number of fish kept and released by species and the trip cost. For Trip A, 

the midpoint of the range of fluke catch depicted in the choice experiment was used to calculate 

numbers of fluke kept and released. The utility associated with Trip C, a fishing trip for other 

species, was specified as a function of the trip cost and a constant term (fish for other species) 

that measures the utility of a pelagic trip relative to the utility from the other alternatives. The 

utility associated with the non-fishing, “I would not go saltwater fishing” alternative (alternative 

D), was specified as a function of a constant term (do not fish) that captures preferences for not 

fishing. To allow for diminishing marginal utility of catch (Lee et al. 2017), keep and release 

attributes entered the model as their square root. The estimated models assumed that all non-cost 

parameters were normally distributed, while the cost parameter was treated as fixed to facilitate 

welfare calculations (Revelt and Train 2000).  

 

4 Behavioral model results 

Results from the panel mixed logit model, estimated separately for each regional survey sub-

version, are shown in Table 3. Mean parameters measure the relative importance of each trip 



attribute on overall angler utility, while standard deviation parameters measure the extent to 

which preferences vary across the sampled population.  

 The estimated mean parameters were generally of the expected sign. Across the regional 

models, the mean parameters on trip cost, the marginal utility of price, were negative and 

significant and intuitively suggest that higher trip costs reduce angler utility. Mean parameters on 

all keep variables were positive, significant, and higher in magnitude than their corresponding 

release parameter. This means that each species is predominantly targeted for consumption rather 

than sport, which aligns with input from recreational fishery stakeholders. The magnitude of the 

summer flounder keep parameters relative to other primary species’ keep parameters suggests 

that anglers value keeping fluke more than they value keeping black sea bass, scup, weakfish, or 

red drum.  

The signs and significance of the release parameters varied by species and region. For 

example, only in the VA/NC model was the mean parameter on √SF  released positive and 

significant, suggesting that anglers in this region value catching and releasing summer flounder. 

Additionally, in two of the three regional models, the parameter on √WF  released was positive 

and significant. Catching and releasing scup reduces utility for anglers in New Jersey according 

to the parameter on �scup released. Perhaps these anglers perceive catching and having to 

release scup as a nuisance when fishing for larger and more valuable target species.  

Baseline levels of non-fishing utilities, captured by the parameters on do not fish, were 

negative and significant. This mean that, when given the option, anglers derive more utility from 

fishing than not fishing. In contrast, the parameters on fish for other species suggest that anglers 

place a relatively high value on trips for striped bass and bluefish (or striped bass, bluefish, 

cobia, and Spanish mackerel in the VA/NC model). This follows from Trip C being most 

frequently selected as the favorite trip and aligns with the fact that striped bass are the most 

heavily targeted recreational species in the region. Lastly, with the exception of √BSB  released 

in the ME-NY and NJ models, the significance of standard deviations parameters confirms that 

preferences for keeping and releasing fish vary across the population, i.e., that marginal changes 

in catch will affect different anglers differently.   

 



 

Table 3. Estimated utility parameters from mixed logit models.  

 ME-NY  NJ DE/MD VA/NC 

Mean parameters Estimate St. Err. Estimate St. Err. Estimate St. Err. Estimate St. 
Err. 

trip cost -0.012*** 0.000 -0.008*** 0.000 -0.009*** 0.000 -0.007*** 0.000 
�SF kept 0.535*** 0.061 0.721*** 0.064 0.776*** 0.048 0.507*** 0.031 
√SF released -0.068 0.045 0.007 0.041 0.043 0.033 0.105*** 0.021 
�BSB kept 0.273*** 0.033 0.175*** 0.032 0.239*** 0.027 0.178*** 0.018 
√BSB released -0.021 0.024 0.010 0.024 -0.009 0.019 0.025** 0.013 
�scup kept 0.078*** 0.020 0.096*** 0.021         
�scup released -0.015 0.015 -0.033** 0.016         
�WF kept     0.367*** 0.055 0.360*** 0.042 0.231*** 0.029 
√WF released     0.096** 0.043 0.061* 0.035 0.034 0.023 
�RD kept             0.428*** 0.036 
√RD released             0.081*** 0.023 
do not fish -2.398*** 0.233 -1.877*** 0.257 -2.838*** 0.231 -3.573*** 0.231 
fish for other 
species 1.272*** 0.172 1.049*** 0.198 0.606*** 0.151 0.493*** 0.116 

 
        

St. dev. parameters        

�SF kept 0.692*** 0.079 0.630*** 0.079 0.516*** 0.061 0.457*** 0.043 
√SF released 0.358*** 0.058 0.125 0.104 0.258*** 0.047 0.230*** 0.034 
�BSB kept 0.245*** 0.048 0.283*** 0.048 0.311*** 0.037 0.189*** 0.031 
√BSB released 0.080 0.058 0.053 0.051 0.139*** 0.029 0.087*** 0.031 
�scup kept 0.096* 0.058 0.128*** 0.040   0.000   0.000 
�scup released 0.077*** 0.028 0.120*** 0.027   0.000   0.000 
�WF kept     0.220** 0.111 0.251*** 0.094 0.283*** 0.058 
√WF released     0.223*** 0.081 0.220*** 0.052 0.142*** 0.046 
�RD kept       0.000   0.000 0.472*** 0.062 
√RD released       0.000   0.000 0.324*** 0.033 
do not fish 2.193*** 0.198 1.969*** 0.173 2.246*** 0.164 2.676*** 0.181 
fish for other 
species 1.652*** 0.129 1.799*** 0.144 1.752*** 0.114 1.839*** 0.090 

No. anglers  443 357 581 1067 
No. choices 3451 2764 4494 8332 
LL -3221.809 -2797.016 -4227.267 -8051.496 
LL(0) -3753.301 -3203.314 -4814.363 -9215.204 
Pseudo R2 0.327 0.270 0.321 0.303 
AIC/n 1.877 2.039 1.889 1.938 
BIC/n 1.914 2.095 1.918 1.959 
Notes: *,**, and *** represent significance at the 10%, 5%, and 1% level of significance, respectively. SF = 
summer flounder, BSB = black sea bass, WF = weakfish, RD = red drum.  



5 Simulation modeling overview 

To assess the effect of alternative fluke management measures and stock conditions on fishing 

effort, angler welfare, the local economy, and fishing mortality, we integrate the utility 

parameters in Table 3 with historical catch, effort, and trip expenditure data to create the 

recreational demand model (RDM). The RDM measures behavioral and economic responses to 

changes in fishing conditions through simulation of individual choice occasions, i.e., sets of 

fishing and non-fishing opportunities for hypothetical decision makers. Similar models have 

been developed for Northeast U.S. recreational fluke (Holzer and McConnell 2017) and striped 

bass (Carr-Harris and Steinback 2020) fisheries, and for managing the recreational Gulf of Maine 

cod and haddock fishery (Lee et al. 2017).  

The RDM is multipart algorithm that simulates individual choice occasions mirroring 

those depicted in the CE survey. Each simulated choice occasion consists of three multi-attribute 

options: a fluke trip, a pelagic trip, and an option of not going saltwater fishing. The algorithm 

assigns to each choice occasion attribute levels based on historical and projected catch and effort 

data and utility parameters from the angler behavioral model. It then calculates the expected 

utility of each multi-attribute option, from which it derives the probability an angler would select 

that option and the associated consumer surplus. Expected utilities are calculated twice: first, in 

the baseline scenario in which harvest, discards, and trip cost per choice occasion reflect fishery 

conditions in the baseline year; and then again in subsequent projection scenarios when harvest 

and discards per choice occasion reflect alternative management measures and projected stock 

conditions. Differences in expected utilities between baseline and projection scenarios form the 

basis for determining the impact of alternative management and stock conditions on fishing 

effort, angler welfare, the local economy, and fishing mortality. 

 

6 Calibration sub-model 

The first of the two-part simulation algorithm, visually depicted in Appendix Figure 1, involves 

calibrating the recreational demand model to a baseline year. In essence, we attempted to 

replicate observed state-level outcomes, i.e., harvest and discards, using trip-level data. We 

calibrate the model to 2019 because it was the most recent year in which input recreational data 

was unaffected by COVID-related sampling limitations and because management measures 

remained relatively consistent across all states from 2019-2021. 



 The calibration sub-model begins by assigning choice occasions a trip costs drawn at 

random from state-level distributions. Cost distributions were created from recent trip 

expenditure survey data (Lovell et al. 2020) and weighted in proportion to the estimated number 

of directed fluke trips taken from shore, private boats, and for-hire boats in each state in 2019. 

Choice occasion are then assigned numbers of fish caught by species drawn at random 

from baseline-year catch-per-trip distributions. According to MRIP data, directed trips for fluke 

also tend to catch black sea bass, as the correlation in catch-per-trip between the two species is 

positive and significant across the study area. This is likely due to the two species cohabitating 

similar fishing grounds and sharing a bottom-dwelling nature that makes them susceptible to 

similar fishing gears. We account for this correlation through copula modeling. Copulas are 

functions that describe the dependency among random variables and allow us to simulate 

correlated multivariate catch data that enter the demand model. We fit negative binomial 

distributions to each catch series (Terceiro 2003) and enter the estimated mean and dispersion 

parameters into a t-copula function. With this function we simulate catch data with a correlation 

structure approximating the observed correlation between the two series. This copula modeling 

approach provides the flexibility to generate multivariate catch-per-trip data with any specified 

correlation structure and distributional parameterization. Catch-per-trip of other species included 

in the model is assumed independent and these distributions are fitted (negative binomial) to 

MRIP catch data.5  

The calibration sub-model then allocates catch as harvest and discards. To do so, it draws 

a value 𝑑𝑑𝑓𝑓𝑓𝑓 from 𝐷𝐷~𝑈𝑈[0,1] for every fish species 𝑓𝑓 caught in state 𝑠𝑠 on a given choice occasion. 

Fish are harvested (discarded) if 𝑑𝑑𝑓𝑓𝑓𝑓 is higher (lower) than 𝑑𝑑𝑓𝑓𝑓𝑓∗ , where  𝑑𝑑𝑓𝑓𝑓𝑓∗  is the value for which 

simulated harvest-per-choice occasion of species 𝑓𝑓 in state 𝑠𝑠 approximates the MRIP-based 

estimate of harvest-per-trip in the baseline year.6 These 𝑑𝑑𝑓𝑓𝑓𝑓∗  values, identified outside the 

simulation algorithm, are the value of the catch-at-length cumulative distribution function 

evaluated at the minimum size limit. We implemented this method because harvest is the key 

determinant of the probability a choice occasion results in a fluke trip, and these probabilities in 

aggregate determine the number of choice occasions entering the ensuing projection sub-model. 

 
5 Catch-per-trip data for all species included in the simulation are based on recreational fishing trips that caught or 
primarily targeted fluke.  
6 Fluke fishing is assumed to stop once the bag limit is reached, i.e., there are no additional discards after a choice 
occasion reaches the limit. 



Approximating MRIP-based estimates of harvest in the baseline years therefore ensures that the 

calibration sub-model generates an appropriate number of choice occasions. The whole process 

up to this point is repeated 10 times, providing multiple draws per choice occasion that reflect 

angler expectations about catch and trip cost.  

Having a vector of attributes 𝑥𝑥𝑛𝑛𝑛𝑛 anchored on 2019 catch and recent trip expenditure data, 

we then assign to each choice occasion 𝑛𝑛 a draw from the distribution of estimated utility 

parameters in Table 3 and calculate the utility of option 𝑖𝑖 as 𝛽𝛽𝑛𝑛′ 𝑥𝑥𝑛𝑛𝑛𝑛. Expected utility is taken as 

𝛽𝛽𝑛𝑛′ 𝑥𝑥𝑛𝑛𝑛𝑛 averaged over the 10 draws of catch and costs and is used to calculate choice probabilities 

conditional on 𝛽𝛽𝑛𝑛: 

 

𝑝𝑝𝑛𝑛𝑛𝑛 =
𝑒𝑒𝛽𝛽𝑛𝑛′ 𝑥𝑥𝑛𝑛𝑛𝑛

∑ 𝑒𝑒𝛽𝛽𝑛𝑛
′ 𝑥𝑥𝑛𝑛𝑛𝑛𝐽𝐽

𝑗𝑗=1

 . 

 

(5) 

 

The calibration model generates 𝑁𝑁𝑠𝑠0 choice occasion for each state 𝑠𝑠, where the sum of the 

conditional probabilities of taking a fluke trip over the 𝑁𝑁𝑠𝑠0 choice occasions equals the MRIP-

based estimate of total directed fluke trips in state 𝑠𝑠 during 2019. The number of choice 

occasions 𝑁𝑁𝑠𝑠0 remains fixed throughout subsequent projection sub-model iterations. Expected 

total harvest and discards is computed as the sum of probability-weighted harvest and discards 

over the 𝑁𝑁𝑠𝑠0 choice occasions.  

 Output from the calibration sub-model and MRIP-based estimates of harvest in 2019 are 

displayed in Table 4. Calibration statistics come from re-running the model 30 times, generating 

and drawing from new fluke and black sea bass catch-per-trip and utility parameter distributions 

at each iteration. MRIP point estimates and variance statistics are based on the weighting, 

clustering, and stratification of the survey design. Given the relative importance of harvest and 

the general insignificance of discards on angler utility, Table 4 compares simulated and MRIP-

based estimates of harvest on directed summer flounder trips in numbers of fish for each state 

and species and omits discards.7  

 The calibration sub-model was designed to approximate estimated actual harvest, and 

thus simulated harvest for each species-state combination approximates the MRIP-based 

 
7 Catch statistics were only calculated in the model for state-species combinations in which a species’ catch 
attributes entered the corresponding regional utility model.  



estimates. Given that expected harvest is a key determinant of the probability of taking a fluke 

trip, this bolsters confidence that the calibration model generates an appropriate number of 

choice occasions for the ensuing projection sub-model. 

 
Table 4. Harvest in numbers of fish on directed fluke trips from the calibration sub-model and MRIP. 95% 
confidence intervals in brackets. 
State Calibration sub-model MRIP 2019 
 Summer flounder harvest 
Massachusetts 54,896 [54615, 55177] 55,386 [23325, 87447] 
Rhode Island 220,799 [219764, 221834] 213,592 [51594, 375590] 
Connecticut 92,581 [91951, 93211] 89,843 [54911, 124776] 
New York 563,376 [559579, 567173] 561,173 [318178, 804167] 
New Jersey 1,075,530 [1069815, 1081245] 1,108,158 [736178, 1480138] 
Delaware  89,045 [88593, 89497] 91,025 [56129, 125921] 
Maryland 77,650 [77195, 78105] 79,371 [25346, 133396] 
Virginia 150,361 [149794, 150928] 149,785 [66148, 233423] 
North Carolina 33,391 [33280, 33502] 34,895 [13536, 56253] 
   
 Black sea bass harvest  
Massachusetts 52,917 [52587, 53247] 54,178 [20329, 88028] 
Rhode Island 207,900 [206767, 209032] 214,471 [118736, 310206] 
Connecticut 157,294 [156091, 15849] 153,564 [84144, 222985] 
New York 567,622 [562454, 572790] 556,955 [349796, 764115] 
New Jersey 123,443 [121616, 125270] 123,860 [65887, 181833] 
Delaware  13,672 [13469, 13875] 14,348 [4518, 24178] 
Maryland 12,515 [12311, 12718] 13,272 [2407, 24136] 
Virginia 32,112 [31675, 32549] 31,597 [-11867, 75062] 
North Carolina 0 0 
   
 Scup harvest 
Massachusetts 31,467 [31247, 31687] 31,515 [9304, 53726] 
Rhode Island 368,228 [365533, 370923] 366,744 [72937, 660551] 
Connecticut 355,442 [352371, 35851] 439,359 [-65705, 944423] 
New York 1,074,804 [1067309, 1082300] 1,085,926 [687,805, 1,484,048] 
New Jersey 3,452 [3090, 3815] 2,458 [-524, 5440] 
   
 Weakfish harvest 
New Jersey 33,540 [32687, 34393] 32,668 [-10985, 76322] 
Delaware  3,162 [3107, 3216] 3,185 [52, 6317] 
Maryland 0 20 [-19, 60] 
Virginia 6,903 [6790, 7015] 6,765 [158, 13372] 
North Carolina 350 [344, 355] 682 [-594, 1958] 
   
 Red drum harvest 
Virginia 0 0 
North Carolina 0 0 

 

 



7 Population-based adjustments to recreational catch 

Built into the RDM is an explicit relationship between the projected fluke population abundance 

and size distribution with the numbers and sizes of fluke caught by recreational anglers. For 

example, we assume that greater numbers of fluke in the ocean will lead to greater catch-per-trip, 

holding all else constant. Similarly, if the size distribution of fluke changes, so too will the size 

distribution of fish encountered by anglers. To account for these two links, we incorporated into 

the RDM two approaches based on angler targeting behavior. 

 We determined state-level angler targeting behavior for fluke by computing recreational 

selectivity-at-length, or the proportion of the fluke population by length class caught by anglers. 

This metric required a recreational catch-at-length and population numbers-at-length distribution, 

the former of which we created using historical catch data adjusted by the 𝑑𝑑𝑓𝑓𝑓𝑓∗   values identified 

in the calibration sub-model model. The original catch-at-length distribution is: 

 

𝑓𝑓(𝑚𝑚𝑠𝑠) =  𝑐𝑐𝑚𝑚𝑚𝑚
∑ 𝑐𝑐𝑙𝑙𝑙𝑙𝐿𝐿
1

 ∀ 𝑚𝑚 ∈ 1 … 𝐿𝐿,  (6) 

 

where ∑ 𝑐𝑐𝑙𝑙𝑙𝑙𝐿𝐿
1  the MRIP-based estimate of total fluke catch and 𝑐𝑐𝑚𝑚𝑚𝑚 is the sum of fluke harvested 

and discarded within a length bin for state 𝑠𝑠.8  

If 𝑓𝑓(𝑚𝑚𝑠𝑠) accurately represented the true catch-at-length distribution, we could for each 

simulated trip’s draw of catch up to the bag limit, draw from 𝑓𝑓(𝑚𝑚𝑠𝑠), impose a size limit, and 

compute total harvest and discards overall all trips. However, we compared results from this 

method against MRIP estimates in a baseline year and found considerable differences in harvest 

and discards. The differences occurred because 𝑓𝑓(𝑚𝑚𝑠𝑠) does not represent the true catch-at-length 

distribution and is derived from available catch data that perhaps over- or under-samples fluke 

harvest- or discards-at-lengths. Left unaccounted for, this discrepancy would in some cases 

project shifts in harvest that move in a direction opposite to what we would expect under a given 

change in size limits. To ensure that hypothetical changes in size limits affect harvest in ways 

 
8 Numbers of fluke harvested by length are computed by multiplying estimated proportions of harvest-at-length, 
derived from 2018 and 2019 MRIP estimates, by the MRIP-based of estimate of total harvest in 2019. Numbers of 
fluke discarded by length are computed similarly; however, we calculate proportions fluke discarded-at-length in 
2018 and 2019 using raw MRIP data supplemented by volunteer angler logbook data on discard lengths. The 
resulting proportions fluke discarded-at-length are multiplied by the MRIP-based estimate of total discards in 2019 
to arrive at 2019 fluke discards-at-length. 



that follow a priori expectations (e.g., decreasing the minimum size limit relative to 2019 and 

holding all else constant will lead to increased harvest) we adjusted 𝑓𝑓(𝑚𝑚𝑠𝑠) based on the 𝑑𝑑𝑓𝑓𝑓𝑓∗  

values for fluke attained in the calibration sub-model.  

We did this by first using 𝑓𝑓(𝑚𝑚𝑠𝑠) to compute the relative probability of catching a length-

𝑚𝑚 fluke among fluke shorter than, and equal to or longer than the 2019 minimum size limit in 

state 𝑠𝑠, respectively: 

             𝑓𝑓𝑙𝑙(𝑚𝑚𝑠𝑠) =  𝑓𝑓(𝑚𝑚𝑠𝑠)
∑ 𝑓𝑓(𝑙𝑙𝑠𝑠)𝑚𝑚𝑚𝑚𝑚𝑚.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1
𝑙𝑙=1

∀  𝑚𝑚 ∈ 1 …𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1,              (7) 

𝑓𝑓𝑙𝑙(𝑚𝑚𝑠𝑠) =  
𝑓𝑓(𝑚𝑚𝑠𝑠)

∑ 𝑓𝑓(𝑙𝑙𝑠𝑠)𝐿𝐿
𝑙𝑙=𝑚𝑚𝑚𝑚𝑚𝑚.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∀ 𝑚𝑚 ∈ 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠… 𝐿𝐿. (8) 

 

We then distributed 𝑑𝑑𝑓𝑓𝑓𝑓∗   and (1 − 𝑑𝑑𝑓𝑓𝑓𝑓∗  ) across the relative probability weights assigned to the 

corresponding sizes by the unadjusted catch-at-length size distribution to create 𝐹𝐹(𝑙𝑙𝑠𝑠)∗: 

 

𝐹𝐹(𝑙𝑙𝑠𝑠)∗ =  

⎩
⎪
⎨

⎪
⎧

 

 � 𝑓𝑓𝑙𝑙(𝑚𝑚𝑠𝑠)
𝑚𝑚

𝑙𝑙=1
𝑑𝑑𝑓𝑓𝑓𝑓∗                                      ∶ 𝑚𝑚 < 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑𝑓𝑓𝑓𝑓∗                                                                ∶ 𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝑓𝑓𝑙𝑙(𝑚𝑚𝑠𝑠)
𝑚𝑚

𝑙𝑙=𝑚𝑚𝑚𝑚𝑚𝑚.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+1
(1 − 𝑑𝑑𝑓𝑓𝑓𝑓∗  )          ∶ 𝑚𝑚 > 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (9) 

 

 

The resulting probability distribution 𝑓𝑓(𝑙𝑙𝑠𝑠)∗ preserved the value of the catch-at-length 

cumulative distribution function evaluated at the minimum size limit which explains harvest in 

the baseline year (𝑑𝑑𝑓𝑓𝑓𝑓∗  ) and redistributed the remaining probability in proportion to the original 

catch-at-length probability distribution. Using  𝑓𝑓(𝑙𝑙𝑠𝑠)∗, we computed an adjusted catch-at-length 

distribution: 

 

𝑓𝑓(𝑚𝑚𝑠𝑠)∗ = ∑ 𝑐𝑐𝑙𝑙𝑙𝑙𝐿𝐿
1 𝑓𝑓(𝑙𝑙𝑠𝑠)∗ = 𝑐𝑐𝑙𝑙𝑙𝑙

∗

∑ 𝑐𝑐𝑙𝑙𝑙𝑙𝐿𝐿
1

 ∀ 𝑐𝑐 ∈ 1 …𝐿𝐿,  (10) 

 



We then used 𝑐𝑐𝑙𝑙𝑙𝑙∗ , the adjusted catch of length-𝑙𝑙 fluke, and median population numbers-at-age in 

the baseline year, 𝑁𝑁𝑎𝑎, from the Monte Carlo Markov Chain resampling procedure implemented 

in the fluke age-structured assessment program (NEFSC 2019) to compute recreational 

selectivity-at-length. After converting median population numbers-at-age to numbers-at-length 

using commercial trawl survey age-length indices, we followed Lee et al. (2017) and rearranged 

the Schaefer (1954) catch equation to solve for recreational selectivity of length-𝑙𝑙 fluke in state 

𝑠𝑠: 

 

𝑞𝑞𝑙𝑙𝑙𝑙 =  
𝑐𝑐𝑙𝑙𝑙𝑙∗

𝑁𝑁𝑙𝑙
. (11) 

 

Having computed 𝑞𝑞𝑙𝑙𝑙𝑙 for a representative year, 𝑐𝑐𝑙𝑙𝑙𝑙∗  can be computed for any stock 

structure 𝑁𝑁�𝑙𝑙. Rearranging Equation (11) and dividing 𝑐𝑐𝑙𝑙𝑙𝑙∗  by total catch gives the probability of 

catching a length-𝑙𝑙 fluke conditional on the projected stock structure 𝑁𝑁�𝑙𝑙: 

 

𝑓𝑓(𝑐𝑐𝑠𝑠)∗� =
𝑞𝑞𝑙𝑙𝑙𝑙𝑁𝑁�𝑙𝑙

∑ 𝑞𝑞𝑙𝑙𝑙𝑙𝑁𝑁�𝑙𝑙𝐿𝐿
𝑙𝑙

=
𝑐̃𝑐𝑙𝑙𝑙𝑙∗

∑ 𝑐̃𝑐𝑙𝑙𝑙𝑙∗𝐿𝐿
𝑙𝑙

.  (12) 

 

Assuming constant 𝑞𝑞𝑙𝑙𝑙𝑙, Equation (12) shows the relationship between any projected size 

distribution of fluke in the ocean and the size distribution of fluke caught by recreational anglers.  

In addition to population-adjusted recreational catch-at-length distributions by state, 

Equation (12) provides total expected recreational catch by state, ∑ 𝑐̃𝑐𝑙𝑙𝑙𝑙∗𝐿𝐿
𝑙𝑙 , which we use to 

generate population-adjusted fluke catch-per-trip distributions. For each state 𝑠𝑠 we scale the 

estimated mean parameters from the baseline-year fluke catch-per-trip distributions by 

∑ 𝑐̃𝑐𝑙𝑙𝑙𝑙∗𝐿𝐿
𝑙𝑙 ∑ 𝑐𝑐𝑙𝑙𝑙𝑙𝐿𝐿

1⁄ , where ∑ 𝑐𝑐𝑙𝑙𝑙𝑙𝐿𝐿
1  is the MRIP-based estimate of total fluke catch in the baseline year. 

The adjusted mean catch-per-trip parameters therefore reflect expected trip-level changes in 

fluke catch brought on by changes in population abundance. We also adjust the dispersion 

parameter of the projected fluke catch-per-trip distributions such that their coefficients of 

variation remain at baseline-year levels. These adjusted marginal catch-per-trip parameters are 

combined with baseline-year black sea bass marginal parameters and integrated into the 



estimated copula function to create new, population-adjusted joint catch-per-trip distributions 

from which we draw in the projection sub-model. 

 

8 Projection sub-model 

After adjusting the catch-per-trip and catch-at-length distributions based on projected numbers-

at-length, the projection sub-model proceeds by re-simulating outcomes under the alternative 

management scenarios for each of the 𝑁𝑁𝑠𝑠0 choice occasions. The projection sub-model, depicted 

in Figure A2, begins by assigning to each choice occasion 𝛽𝛽𝑛𝑛′ , trip costs, and numbers of scup, 

red drum, or weakfish harvest and discards from the calibration sub-model. It then draws fluke 

and black sea bass catch-per-trip values from the population-adjusted catch-per-trip distribution. 

Fluke harvest and discards per choice occasion are determined by drawing lengths from 𝑓𝑓(𝑐𝑐𝑠𝑠)∗�  

and checking them against the alternative size and bag limit. Black sea bass catch, also drawn 

from the population-adjusted catch-per-trip distribution, is allocated to a harvest or discard bin 

based on the 𝑑𝑑𝑓𝑓𝑓𝑓∗  approach from the calibration sub-model. The process up to this point is 

repeated 10 times and utilities are calculated at each iteration. Expected utility is taken as the 

average utility over the 10 draws and choice occasion probabilities are calculated using Equation 

(5). As in the calibration sub-model, projected total numbers of directed fluke trips is the sum of 

the probability of taking a fluke trip over the 𝑁𝑁𝑠𝑠0 choice occasions and expected total harvest and 

discards is the sum of probability-weighted harvest and discards over the 𝑁𝑁𝑠𝑠0 choice occasions.  

 

8.1 Economic impacts 

We measured both market and non-market values of changes in fishery conditions. The 

market value of recreational marine fishing is in part generated by angler trip expenditures 

filtering though the regional economy. Angler expenditures spur direct, indirect, and induced 

effects, which together represent the total contribution of marine angler expenditures on the 

regional economy. Direct effects occur as angler spend money at retail and service industries in 

support of their trip. In turn, angler spending produces indirect effects as retail and service 

industries pay operating expenses and purchase supplies from wholesalers and manufacturers. 

The cycle of secondary industry-to-industry spending continues until all indirect effects occur 

outside the region. Induced effects occur as employees in direct and indirect sectors make 



household consumption purchases from retailers and services industries. We measure the total 

contribution of marine angler expenditures on the regional economy using economic multipliers 

from the Northeast U.S. marine fishing input-output model (Lovell et al. 2020). Specifically, we 

measure the effect of changes in aggregate angler expenditures on (i) the gross value of sales by 

affected businesses, (ii) labor income, (iii) contribution to region GDP, and (iv) employment in 

recreational fishing-related industries. The first three metrics are measures in dollars, whereas the 

latter is measured in numbers of jobs. We compute these metrics on a state-by-state basis and 

assume that spending on durable fishing equipment, i.e., equipment that is not purchased on a 

trip-by-trip basis like boats, insurance, rods, or reels, which also contributes to the local 

economy, remains constant. When fishing conditions become more attractive to anglers, perhaps 

due to a relaxation of regulations, our model will predict an increase in overall angler 

expenditures that stems from an overall increase in directed fishing trips. Aggregate angler 

expenditures are computed in the projection sub-model as the probability-weighted sum of trip 

costs across choice occasions.  

The non-market value of changes in recreational fluke fishery conditions occurs through 

trip-level changes in expected harvest and discards, attributes of which lack explicit markets that 

directly reveal their value. We measure these angler welfare impacts by computing the change in 

consumer surplus (CS), or the difference in expected utility in dollar terms between the baseline 

management scenario (scenario 0) and the alternative management scenario (scenario 1) (Hoyos 

2010), i.e.,  

 

∆𝐸𝐸(𝐶𝐶𝐶𝐶𝑛𝑛) =
ln �∑ 𝑒𝑒𝑉𝑉𝑛𝑛𝑛𝑛

1𝐽𝐽
𝑗𝑗=1 � − ln �∑ 𝑒𝑒𝑉𝑉𝑛𝑛𝑛𝑛

0𝐽𝐽
𝑗𝑗=1 �

−𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (13) 

 

where 𝑉𝑉𝑛𝑛𝑛𝑛1  and 𝑉𝑉𝑛𝑛𝑛𝑛𝑜𝑜  are expected utilities in the baseline and alternative scenarios and 𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is 

the marginal utility of price. Positive ∆𝐸𝐸(𝐶𝐶𝐶𝐶𝑛𝑛) signifies angler welfare loss and is the amount of 

money needed to offset decreased angler utility from scenario 1 relative to scenario 0, thus 

maintaining scenario 0 utility. Conversely, negative ∆𝐸𝐸(𝐶𝐶𝐶𝐶𝑛𝑛) signifies angler welfare gain and is 

the amount of money anglers would be willing to forego in scenario 1 to maintain scenario 0 



utility. To ease the interpretation of our results, we multiply ∆𝐸𝐸(𝐶𝐶𝐶𝐶𝑛𝑛) by -1 so that positive 

(negative) values of ∆𝐸𝐸(𝐶𝐶𝐶𝐶𝑛𝑛) signify angler welfare gains (losses).  

 

8.2 Alternative operating model assumptions  

Two alternative operating model assumptions were considered in the MSE based on stakeholder 

and technical working group input that represent hypotheses about particular aspects of 

uncertainty in the summer flounder fishery. The first was that MRIP point estimates of 

recreational summer flounder effort are biased upward. We incorporated this scenario in the 

RDM by calibrating the model to the lower bounds of the 95% confidence intervals on MRIP 

estimates of effort, rather than the point estimates. Additionally, recreational selectivity-at-length 

in the baseline year was re-calculated from Equation 11 using (i) initial (2019) numbers-at-age 

data that was scaled down in proportion to the scaling of the MRIP effort data and (ii) MRIP 

catch estimates evaluated the lower 95% confidence interval. 

 The second assumption considered the expected northward shift of fluke biomass over 

time (Perretti and Thorson 2019) that may differentially affect recreational catch in different 

regions. To model these expectations, we first predicted future percentages of fluke biomass in 

three regions (Massachusetts to New York, New Jersey, and Delaware to North Carolina) using 

historical interpolated fluke biomass data downloaded from the Area Analysis Tool in the 

NOAA Fisheries Distribution Mapping and Analysis Portal (NOAA Fisheries, 2022). These data 

were derived from the NMFS Northeast U.S. fall trawl survey dataset and predictions were based 

on the most recent 10 years of available data. Percent total biomass by region was modeled as a 

function of a linear time trend and predicted values were obtained for the out-of-sample years. 

The left panel in Figure 2 shows the regional delineations, while the right panel shows observed 

and predicted percentages of interpolated fluke biomass by region.  

 



 

 

  

Predicted changes in the distribution of fluke biomass across the region entered the RDM 

through changes in mean catch-per-trip. For each year of the projection time horizon, we 

calculated state-level total catch relative to 2019 assuming differentiated biomass accessibility 

across states. After adjusting and rearranging and Equation (12) to reflect this assumption, total 

expected catch during projection year 𝑦𝑦 for state 𝑠𝑠 was calculated as: 

 

𝐶̃𝐶𝑙𝑙𝑙𝑙𝑙𝑙 = � 𝑞𝑞𝑙𝑙𝑙𝑙𝑝𝑝�𝑠𝑠𝑠𝑠𝑁𝑁𝑙𝑙
𝐿𝐿

𝑙𝑙
. (14) 

 

where 𝑝𝑝�𝑠𝑠𝑠𝑠 was the predicted percent of total fluke biomass available to state 𝑠𝑠 in projection year 

𝑦𝑦. Note that in this formulation there is no distinction in availability across length classes. The 

ratio 𝐶̃𝐶𝑙𝑙𝑙𝑙𝑙𝑙/𝐶𝐶𝑙𝑙𝑙𝑙, where 𝐶𝐶𝑙𝑙𝑙𝑙 is total fluke catch in the baseline year for state 𝑠𝑠, was then computed 

for each year of the projection time horizon. During projection simulations, state-level mean 

parameters characterizing the catch-per-trip distribution were multiplied by 𝐶̃𝐶𝑙𝑙𝑙𝑙𝑙𝑙/𝐶𝐶𝑙𝑙𝑙𝑙, thus 

capturing a potential recreational catch response to the northward shifting biomass distribution. 

Figure 2. Left: regional delineations of interpolated biomass data. Right: observed and 
predicted percent of total biomass by region. 



This scenario results in a progressive increase in recreational summer flounder catch in the 

northern states with a concurrent decrease in catch in New Jersey and the southern region.   

 

 

8.3 Out-of-sample predictions  

We assessed the predictive accuracy of the RDM by comparing out-of-sample model forecasts of 

total fluke catch and harvest to MRIP-based estimates. After calibrating the model to 2019, 

forecasts were made for 2015, 2016, 2017, 2018, 2020, and 2021 conditional on state-specific 

recreational fishing regulations and distributions of stock sizes from the summer flounder 

management track 2021 assessment model in those years. We performed 30 iterations of the 

RDM to produce confidence bounds around the mean estimates. MRIP- and RDM-based 

estimates are shown in Figure 3.  

 Of important note is that 2020 and 2021 were both years in which COVID-19 induced 

substantial changes in recreational activities, including fishing behavior (e.g. Midway et al. 

2021). Despite the massive disruption of a pandemic, the RDM does reasonably well at 

predicting fluke catch and harvest in 2018, 2020, and 2021, as mean projections fall within 95% 

confidence intervals of the MRIP estimates. However, the model consistently under-predicts 

total fluke catch and harvest in 2015, 2016, and 2017, as mean projections fall outside or just 

inside the MRIP confidence intervals. Given the good performance of the model during known 

behavioral shifts due to the COVID pandemic, the discrepancies in 2015, 2016, and 2017 could 

be an artifact of the MRIP’s transition from the Coastal Household Telephone Survey (CHTS) to 

the Fishing Effort Survey (FES) in 2018 and the resulting calibration of its entire time series of 

catch and effort estimates through 2017.9 Official MRIP estimates through 2017 are now based 

on calibrated CHTS data, while official MRIP estimates for 2018 and after are based on the FES 

data only. By conditioning the RDM to FES-based estimates in 2019 and comparing our 

projections to re-calibrated CHTS-based estimates in 2015 through 2017, we may be 

 
9 Prior to 2018, the CHTS collected data about recreational fishing effort through a random digit dialing sampling 
approach. Due largely to a decline in the use of landlines over time, between 2007 and 2017 the MRIP developed 
the FES, a mail survey that is sent to randomly sampled residential households in coastal states. Compared to the 
CHTS, the FES was found to be more representative sample of angler population and less susceptible to non-
response and non-coverage bias. The FES was peered review in 2014 and certified as a scientifically sound 
replacement for the CHTS in 2015. For more information see https://www.fisheries.noaa.gov/recreational-fishing-
data/effort-survey-improvements.  

https://www.fisheries.noaa.gov/recreational-fishing-data/effort-survey-improvements
https://www.fisheries.noaa.gov/recreational-fishing-data/effort-survey-improvements


confounding model performance with differences in MRIP estimates driven by the alternative 

data collection methods used to generate the estimates.10  

 In an attempt to eliminate the possible effect of alternative MRIP data collection methods 

on our assessment of the RDM’s predicative performance, we calibrated the RDM to 2017 

(rather than 2019) and projected outcomes for 2015 and 2016. These three years share the same 

underlying data generating process by which recreational fishery statistics are estimated and so 

provide a consistent baseline to assess the predictive accuracy of the RDM for the period prior to 

the changes in the MRIP methodology. Comparisons of coast-wide output from the 2017-

calibrated RDM to MRIP estimates are shown in Figure 4. 

 Figure 4 shows that calibrating the RDM to 2017 leads to more accurate predictions of 

total fluke harvest and catch in 2015 and 2016. While the model over-predicts coast-wide harvest 

in both years, mean estimates fall well within the MRIP-based confidence intervals. The RDM 

over-predicts total fluke catch in 2015 and under-predicts total fluke catch in 2016 but predicted 

means are similar to the MRIP-based point estimates. Furthermore, the predicted 95% 

confidence intervals for total catch in both years are nested within the MRIP-based confidence 

intervals.  

Results in Figures 3 and 4 suggest the RDM is capable of making projections that fall 

within MRIP-based ranges of estimated outcomes. However, they also suggest that the baseline 

year used to calibrate the RDM is important and can affect the accuracy of model predictions. As 

a best practice when making projections for management purposes, the RDM should be 

calibrated to the most recent year of data and projections should be limited to a short, one- or 

two-year time horizon.  

 

 

 
10 Recreational harvest weight for all species in the Mid-Atlantic region dropped by roughly 50% from 2017 to a 
historic low in 2018 (NOAA Fisheries 2022), which may also be indicative of the alternative survey instruments 
used to generate these estimates.  
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Total fluke harvest 

Total fluke catch 

Figure 3. MRIP vs. model projections of coast-wide fluke catch (top) and harvest 
(bottom) in numbers of fish and 95% confidence intervals. Model calibrated to 
baseline year 2019. Gray = MRIP, black = model. 



 

9 Summary 

To recap, the RDM uses estimated preference parameters from the angler behavioral model to 

estimate changes in angler welfare and effort (fishing trips) conditional on expected harvest and 

discards. These estimates parameterize the ensuing calibration- and projection sub-models. 

Along with the behavioral parameters, the calibration sub-model uses historical catch, effort, and 

Total fluke harvest 

Total fluke catch 

Figure 4. MRIP vs. model projections of coast-wide fluke catch (top) and harvest 
(bottom) in numbers of fish and 95% confidence intervals. Model calibrated to 
baseline year 2017. Gray = MRIP, black = model. 
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trip cost data to simulate fishing trips that emulate fishery conditions in the baseline year (2019). 

The calibration sub-model generates a number of fishing trips that enter and remain fixed in the 

subsequent projection sub-model.  

Prior to the projection sub-model routine, the RDM takes projected numbers-at-length in 

year 𝑡𝑡 from the operating model, 𝑁𝑁�𝑙𝑙𝑙𝑙, and adjusts the catch-per-trip and catch-at-length 

distributions via Equation (12). Conditional on these population-adjusted trip-level distributions 

and a given management scenario, the projection sub-model re-simulates the fishery and 

computes expected angler effort, angler welfare, impacts to the local economy, and total harvest 

and discards. Predicted total harvest and discards feed back into the operating model, which 

subsequently produces 𝑁𝑁�𝑙𝑙𝑙𝑙+1, the input for the RDM in year 𝑡𝑡 + 1. This recursive cycle 

continues for each year of the time horizon and over multiple iterations.  
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Figure A1. Calibration sub-model algorithm. Only the loop for summer 
flounder is shown in detail. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. Projection sub-model algorithm. Only the loop for summer flounder 
is shown in detail. 
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