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What is the problem?
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What is the problem?

Ocean Acidification
Lower pH, higher CO2, less 
carbonate may affect deposition of 
shells, exoskeletons, and otoliths; 
viability; rates of mortality and 
growth; and organismal condition.

Stations Mauna Loa and Aloha, HI (Feely 2008)
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Context – Marine Fish Populations
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Examining ecologically taxa of economic importance to NE USA

• ELH features: spawns: autumn, offshore, pelagic eggs
• ELH habitat: autumn/winter, shelf, stable water (MAB-SAB) 

Summer flounder (Paralichthys dentatus)

Sandy HookSandy Hook
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What are we doing about it? 
(experimental studies)

shelf spawningshelf spawning



Examining ecologically taxa of economic importance to NE USA

• ELH features: spawns: winter, inshore*, benthic eggs
• ELH habitat: spring, estuaries, variable water (MAB-GoM)

Winter flounder (Pseudopleuronectes americanus)

Sandy HookSandy Hook
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What are we doing about it? 
(experimental studies)

Stellwagen Bank 
(offshore spawning)
Stellwagen Bank 
(offshore spawning)



Wide range of CO2 levels and water temperatures

RC Chambers | Mid-Atlantic Fishery Management Council | 12/14/2016 | Slide 10

What are we doing about it? 
(experiment implementation)
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What are we doing about it? 
(experiment implementation)
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Factorial experimental designs
• CO2 treatment (3 or 4 levels) 
• Temperature (16, 19, 22 oC)

• 2 to 6 replicates
• 100 embryos; 300 larvae / container



• pCO2 effect (fertilization decreased with pCO2)
• pCO2 x temperature interaction
• pCO2 x female interaction
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What have we found? 
(experiment implementation – summer flounder)

Fertilization rate (CO2 x temperature)

Candelmo et al. (in prep)
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Embryonic period survival
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What have we found? 
(experiment implementation – summer flounder)
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Chambers et al. 2014. Biogeosciences

28 dph
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Size and development of larvae

What have we found? 
(experiment implementation – summer flounder)
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Chambers et al. 2014. Biogeosciences
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Size and development of larvae

What have we found? 
(experiment implementation – summer flounder)
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Recruitment processes – environmental effects
Effects of time and location of spawning on growth and size at settlement

• Size of larvae at age, 
and developmental 
stage (flexion) at size 
depends on the time 
and location of 
spawning
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Summary and …

1. Elevated CO2 effects vary with responses measured.  Fertilization rate 
decreased with increasing CO2 levels, and CO2 x temperature 
interactions occurred.  

2. Hatching rate decreased with increasing CO2 levels.

3. Initial larval size and larval growth rate was higher at elevated CO2
levels but size at settlement was earlier and at smaller sizes.  

4. Regarding thermal effects, size and time at hatching, and size and 
time at settlement decreased with increasing temperature.



1. Broader assessment of the phenotypic plasticity (resilience) of 
summer flounder to elevated CO2. (High-frequency CO2 system)

2. Evaluate interactions between effects of CO2, temperature, and 
other environmental stressors. (Climate Impacts on Fish Stocks)

3. Quantify consequences of elevated CO2 effects (e.g., behavioral 
trials of consumption rate)

4. Incorporating experimentally derived trait and rate estimates into 
dynamic recruitment models, e.g., attribute-explicit, process-based 
IBMs (Climate Impacts on Fish Stocks). 

What’s next?
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Phenotypic plasticity vs adaptive potential
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What’s next? 
(future experimental studies)
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What’s next? 
(future experimental studies)
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What’s next? 
(future experimental studies)

High-frequency CO2 System


