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Abstract 10 

Forecasting variation in the recruitment to fish stocks is one of the most challenging and long-running 11 

problems in fisheries science and essentially remains unsolved today. Traditionally recruitment forecasts 12 

are developed and evaluated based on explanatory and goodness-of-fit approaches that do not reflect 13 

their ability to predict beyond the data on which they were developed. Here we propose a new generic 14 

framework that allows the skill and value of recruitment forecasts to be assessed in a manner that is 15 

relevant to their potential use in an operational setting. We assess forecast skill based on predictive power 16 

using a retrospective forecasting approach inspired by meterology, and emphasise the importance of 17 

assessing these forecasts relative to a baseline. We quantify the value of  these forecasts using an 18 

economic cost-loss decision model that is directly relevant to many forecast users. We demonstrate this 19 

framework using four stocks of lesser sandeel (Ammodytes marinus) in the North Sea, showing for the 20 

first time in an operationally realistic setting that skilful and valuable forecasts are feasible in two of these 21 

areas. This result shows the ability to produce valuable short-term recruitment forecasts, and highlights 22 

the need to revisit our approach to and understanding of recruitment forecasting.  23 
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Introduction 24 

Recent developments in ocean observations and modelling today make it possible to forecast many of the 25 

physical variables in the ocean (Doblas-Reyes et al., 2013; Meehl et al., 2014). Building on top of this data 26 

about the ocean environment, forecasts of marine ecological responses have been developed (Payne et 27 

al 2017) and provide managers and stakeholders the foresight needed to sustainably manage marine living 28 

resources (Tommasi et al., 2017b; Hobday et al., 2018). Examples of operational forecasts already in use 29 

include southern Bluefin tuna habitat forecasts (Eveson et al., 2015), the dynamic fisheries bycatch 30 

management tool EcoCast (Hazen et al., 2018), and blue whale habitat preference forecast (Hazen et al., 31 

2017). However, these operational fisheries forecast products are currently limited to predictions of 32 

distribution and phenology and there are currently no known operational marine fish recruitment 33 

forecasts (Payne et al., 2017).  34 

Understanding and forecasting changes in fish stock productivity has, however, been a key aspiration in 35 

fisheries science for the last century (Leggett and Deblois, 1994; Subbey et al., 2014; Tommasi et al., 36 

2017a; Haltuch et al., 2019). Recruitment, the number of young individuals produced each year, has a key 37 

role in shaping fish population dynamics (Hilborn and Walters, 1992), especially in  determining total 38 

allowable catches for short-lived species, where the recruiting year-classes contribute a significant share 39 

of the landings. Environmental drivers play an important role in shaping the productivity of such stocks 40 

(e.g. via temperature (MacKenzie et al., 2008; Mantzouni and Mackenzie, 2010), salinity (Köster et al., 41 

2005) or phenology (Platt et al., 2003)) and including climate information in stock-assessments can reduce 42 

uncertainties in stock status and the risk of over- or under harvesting (Hare et al., 2010; Haltuch and Punt, 43 

2011; Tommasi et al., 2017a, 2017b). The ability to foresee changes in productivity on a short time-scale 44 

can therefore enable adaptive and pre-emptive decision-making strategies, benefiting both stakeholders 45 

and managers (Hobday et al., 2016; Payne et al., 2017; Welch et al., 2019). 46 
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Common approaches have however shown limited ability to produce reliable recruitment forecasts for 47 

operational (i.e. regularly repeated) use in management.  The large variety of underlying environmental, 48 

physical and ecosystem processes affecting recruitment simultaneously (Leggett and Deblois, 1994; 49 

Browman et al., 1995; Myers, 1998; Tommasi et al., 2017b) can often give rise to transient but spurious 50 

correlations (Sugihara et al., 2012). Fish population time series are often relatively short in length (Ricard 51 

et al., 2012) and hampered by high observation noise, limiting the ability to develop and test predictive 52 

models (Clark and Bjørnstad, 2004; Ward et al., 2014). Furthermore, environment-recruitment 53 

correlations have been shown to breakdown when confronted with new data, diminishing the uses for 54 

management (Myers, 1998; Tommasi et al., 2017b).   The relative importance of drivers of recruitment 55 

can also change from year to year (“non-stationarity”) (Subbey et al., 2014; Haltuch et al., 2019). As a 56 

consequence of all of these processes, recruitment forecasts are widely viewed with scepticism in the 57 

community today. 58 

Nevertheless, the potential of such forecasts to benefit all those that depend on living marine resources 59 

is clear. So how can this potential be realised? And even more importantly, how would we know when we 60 

have produced forecasts that can be used as a regular part of decision-making? To answer this question, 61 

here we take inspiration from other forecasting fields, and in particular from meteorology, a discipline 62 

that has also been attempting to predict chaotic and difficult to observe systems for nearly a century 63 

(albeit with considerably more success!). In particular, the question of “what makes a good forecast?” is 64 

addressed in a seminal 1993 paper in the field by Alan Murphy (Murphy, 1993) that introduces two key 65 

relevant concepts, skill, and value, which form the basis for this work. 66 

Murphy defines forecast “skill” as the quantitative ability of the forecast: is it numerically correct? In the 67 

marine setting, model performance is often measured based on goodness-of-fit measures that quantify 68 

the ability to explain the data e.g (Lindegren et al., 2018).  There is however, a fundamental difference 69 

between explanatory and predictive power: while explanatory models can be used to investigate causal 70 
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hypotheses, models with high explanatory power cannot be expected to predict well (Levins, 1966; 71 

Shmueli, 2009; Dickey-Collas et al., 2014). But when the goal is to produce forecasts to be used regularly 72 

to predict into the future for use in a decision-making context, we clearly need to evaluate their predictive 73 

power. In the atmospheric and climate sciences for example, skill is often assessed based on retrospective 74 

forecast analysis (Wilks, 2011) i.e. predicting beyond the period over which the model was developed or 75 

tuned, directly reflecting the way the forecast would be used operationally. Furthermore, meteorology 76 

always places its forecasts in the context of a baseline or reference forecast (Jolliffe and Stephenson, 2012; 77 

Payne et al., 2012). Common baseline forecasts includes random selection of categories or using the 78 

average over a given reference time period, often referred to as climatology in atmospheric sciences 79 

(Jolliffe and Stephenson, 2012). 80 

Secondly, Murphy discusses the usefulness of a forecast in terms of its “value” in aiding decision-making. 81 

A good forecast is of value to an end-user by assisting in decision-making, providing economic value or 82 

otherwise benefiting the user (Murphy, 1993). While value in recruitment forecasts has been discussed 83 

(e.g. Walters, 1989; Field et al., 2010), a quantitative approach to value is rarely seen in marine science. 84 

Simple economic decision models can analyse forecasts under simplified assumptions, helping end-users 85 

decide if it is economically wise to follow the forecast (Murphy, 1976a). Quantitatively providing a value 86 

assessment can help integrate forecast products directly into a user’s framework, allowing users to assess 87 

the benefits of a given forecast system and can give a clear insight into how, and when, a forecast should 88 

be used (Murphy, 1976a). 89 

Here we argue that as the recruitment problem has never been evaluated from this perspective before, 90 

we currently do not know whether it is possible to regularly make skilful and valuable forecasts of 91 

recruitment. We therefore combine the ideas Murphy (1993) with the state of the art in recruitment 92 

modelling to give a generic framework for developing and assessing short-term recruitment forecasts for 93 

fish stocks for regular use in an decision-making setting. Forecast skill is assessed based on predictive 94 
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performance, using validation techniques currently used in atmospheric and meteorological sciences and 95 

that reflect the way a forecast would be used in practice. Value is assessed quantitively, using an economic 96 

cost-loss decision model, providing insight into the actual monetary value of the forecast product. We 97 

demonstrate the framework using multiple stocks of the ecologically and economically important lesser 98 

sandeel (Ammodytes marinus) in the North Sea, where previous studies of recruitment have already 99 

highlighted several recruitment correlates (Arnott and Ruxton, 2002; van Deurs et al., 2009; Lindegren et 100 

al., 2018). 101 

Methods 102 

Recruitment forecast framework 103 

This work presents a generic framework (Figure 1a) for assessing recruitment forecasts of fish stocks in an 104 

operational setting. The core of the framework is the idea of retrospective forecasting, an approach 105 

adapted from the atmospheric sciences, in which the time series of interest is split into two continuous 106 

blocks either side of a hypothetical “forecast issue date”. The first block is used to parameterise and train 107 

the core predictive model (the “training” block): predictions are then made for the remaining block of 108 

data (the “verification” block) based on this model. The issue date is then shifted forward by one time 109 

step, the data repartitioned and the process repeated. Iterating over all issue dates, a database of 110 

predictions is generated, with each prediction being characterised by the id of the cohort being predicted 111 

and issue date: the difference between these two is the “lead time” of the forecast (Figure 1b). The 112 

ensemble of predictions can then be compared against the “true” recruitment to that cohort, with various 113 

skill metrics being calculated as a function of forecast lead time. The skill metrics generated are then used 114 

as the basis for forecast value assessment. 115 

There are several key features of this framework that make it highly appropriate for addressing the 116 

question at hand i.e. assessing operational forecast skill.  The emphasis on temporal blocks, for example, 117 
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differs from other cross-validation approaches (of which it is a subset (Roberts et al., 2017)) and is 118 

important as it directly mimics the way in which recruitment forecasts would be used in an operational 119 

setting. Furthermore more, temporal blocks also remove the potential for the leakage of information 120 

between randomly-selected cross-validation folds, a particularly important issue where there is temporal 121 

structure and autocorrelation in the the time series (as is common in recruitment data). This retrospective 122 

forecasting approach therefore gives a much more realistic assessment of the skill of forecast, and has 123 

been shown to consistently outperform other approaches when forecasting is the goal (Roberts et al., 124 

2017) .  125 

The user of the temporal-block approach, however, has two key caveats associated with it. Firstly, the 126 

choice of the initial forecast issue date separating the training and verification blocks represents a tradeoff 127 

between the desire to have as many verifications as possible (and thus the most reliable skill evaluation) 128 

and the need to have sufficient data to train the model on in the first place. This tradeoff is more restrictive 129 

than random cross-validation and will be particularly acute in instances where the length of the time-130 

series is short: in some cases, there may not be sufficient data to make a reliable skill assessment in this 131 

manner. The exact choice will depend on the characteristics of the system at hand. Secondly, and even 132 

more importantly, care must be taken to avoid inadvertedly introducing circular reasoning through the 133 

use of predictors identified by explanatory analyses over the whole time series: such variables will show 134 

skill over the length of the time-series for which they were indentified, but this may not extend into the 135 

future. Ideally, predictors should be based on either generic reasoning (e.g. stock-recruitment 136 

relationships, the match-mismatch hypothesis) or work published prior to the earliest forecast issue date 137 

considered. Alternatively, automatic variable and/or model selection procedures can be incorporated into 138 

the “fit model” part of the framework to allow the identification of skilful predictors for each forecast 139 

issue date. 140 
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The generic nature of the framework  mans it can be applied widely: each individual application can and 141 

should vary depending on the specifics of the system being assessed. The recruitment time series used 142 

can be taken from either stock assessment outputs or from a recruitment-index (e.g. from a larval survey). 143 

The selection of predictors is flexible but should be informed by the best available biological knowledge 144 

about the stock (Dickey-Collas et al., 2014b; Subbey et al., 2014) (previous caveats not withstanding): 145 

stock-specific biomass or demographic indicators, environmental data or other biological parameters (e.g. 146 

prey and predator concentrations) can be incorporated equally. Any modelling approach that produces 147 

predictions can be considered, including classical recruitment models (e.g. Ricker (Ricker, 1954) and 148 

Beverton-Holt (Beverton and Holt, 1957)), statistical and data mining approaches (e.g. generalized 149 

additive models (GAMs) (Hastie and Tibshirani, 1986), empirical dynamic modelling (EDM) (Sugihara et 150 

al., 2012) and classifier models (Fernandes et al., 2015)): ensembles of models can also be considered e.g. 151 

combined via multi-model inference (Burnham and Anderson, 2004). Predictions can (and should) be 152 

considered in terms of continuous outputs, probability distributions and/or as categories (i.e.. using a 153 

division into terciles (high, medium, low) based on historical observations). The choice of skill metrics will 154 

be influenced by the nature of the forecast (Jolliffe and Stephenson, 2012) but should include multiple 155 

metrics(Stow et al., 2009; Brun et al., 2016). Skill metrics then form the basis for a quantitative value 156 

assessment, evaluating the expected economic value of following a given forecast. Furthermore, the 157 

framework allows for forecasts of both single stocks or of aggregations of multiple stocks into a single 158 

portfolio forecast, as may be relevant for decision-making across wider-scales (e.g. factories processing 159 

many different species)  160 

We illustrate the use of this framework through a worked example focusing on recruitment forecasts of 161 

the lesser sandeel  (Ammodytes marinus) in the North Sea below. 162 
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Figure 1 Skill and value assessment framework a) Overview of the process in the forecasting framework. 163 

Here, data are extracted and combined into the appropriate modelling data. Afterwards, an iterative 164 

process of data truncation and model fitting are the basis of all model objects and predictions. These 165 

predictions contains both the current and the retrospective predictions, which can be used for skill and 166 

value evaluation b) Schematic of retrospective forecast system used to generate a retrospective forecast 167 

time series.   One time series is generated at each lead time. Dashed line indicates first data cut-off and 168 

the start of the retrospective forecasting period. Dotted lines indicates the forecast time series at a given 169 

lead. After the first cut-off each subsequent retrospective forecast will include the previous year’s 170 

observations increasing the size of the model training data set. For each generated retrospective forecast 171 

time series skill, value and accuracy will be evaluated. Depending on species, stocks, data availability and 172 

period of interest, the evaluated cohort period and the start of the retrospective analysis can vary.  173 
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Sandeel Case Study 174 

The lesser sandeel is a pelagic species of the Ammodytidea family and is one of the most common 175 

sandeels found in the North Sea. Adult lesser sandeel habitats are found in most of the North Sea, 176 

generally distributed across shallow sandy banks (van Deurs et al., 2009, Figure 1a). Particle-tracking 177 

studies and the sedentary state of post-recruitment sandeel (Christensen et al., 2008; Pedersen et al., 178 

2019) resulted in a division into 7 different individually managed North Sea sandeel stocks. Analytical 179 

stock assessments are done in management areas 1r, 2r, 3r and 4 (see Figure 2a), while the remaining 180 

three stocks are considered data poor. Sandeel is seen as one of the main links between primary 181 

production and the higher trophic levels in the North Sea for both larger piscivorous fish (e.g. cod and 182 

haddock) and seabirds (Eliasen et al., 2011). The lesser sandeel has historically supported a large fishery, 183 

which has seen a large decline in recent years (Dickey-Collas et al., 2014b). Due to the importance of the 184 

species, recruitment to these stocks is well studied (Arnott and Ruxton, 2002; van Deurs et al., 2009; 185 

Eigaard et al., 2014; Lindegren et al., 2018). In the south western part of the North Sea (i.e. management 186 

area 1r), sandeel shows signs of being influenced negatively by temperature, while the abundance of the 187 

main prey, Calanus finmarchus, has a positive influence (Arnott and Ruxton, 2002; Lindegren et al., 188 

2018). Density dependence has also been found to be an important driver, where competition with 189 

young adults and juveniles has a negative effect on recruitment (van Deurs et al., 2009). Currently, stock 190 

assessment uses a geometric mean for recruitment predictions (ICES, 2018). These geometric means will 191 

be used as continuous reference models during skill evaluation.  192 
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Figure 2 Study area and data a) Map of the North Sea showing the four management areas of sandeel 193 

assessed analytically. Sandy habitat banks, the predominant sandeel habitat, are shown in orange. b) 194 

Recruitment time series for the four sandeel stocks from the official ICES stock assessment. Dashed-195 

horizontal lines mark the delineation of the upper and lower terciles for each stock. 196 

  197 
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Data 198 

Operational forecasts require data to be available at the time of the forecast, potentially excluding some 199 

potentially relevant predictors. For example, estimates of zooplankton prey, Calanus finmarchicus and 200 

Temora longicornis have been used in other explanatory studies (Arnott and Ruxton, 2002; van Deurs et 201 

al., 2009; Lindegren et al., 2018) but are only available with 1-2 years delay, and are therefore of limited 202 

value in forecasting recruitment in this stock in an operational setting. We focus our analyses on data that 203 

are available with a maximum of a few months delay. An overview of the data employed is provided in 204 

Table 1 and the complete time series are found in Figure S1. 205 

Assessment data 206 

Assessment data used for sandeel modelling is obtained from official ICES advice, based on the stochastic 207 

multi-species assessment model, SMS (Pedersen et al., 1999).The SMS model is run in a single-stock mode 208 

for sandeel assessments, and integrates data on catches, catch effort, maturity, weight, fishing mortality 209 

and natural mortality at a given age (ICES, 2018). All stock assessment data are the current (2021) 210 

assessments provided by ICES for area 1r, 2r, 3r and 4 (Figure 2b), where recruits are treated at age 0. 211 

From the assessment data, 4 demographic variables are extracted, consisting of spawning stock biomass 212 

(SSB), total stock biomass (TSB), number of individuals (SumN) and number of one-year olds (N1). This 213 

allows for different types of interactions between the demography, including density dependence and 214 

SSB impact on recruitment. All demographic data are log-transformed before use in modelling and 215 

converted to log-anomalies (relative to the average log-value over the full time series for each stock).  216 

Environmental data 217 

High resolution spatial sea surface temperature data is gathered from the Optimum Interpolation Sea 218 

Surface Temperature (OISST) product (Banzon et al., 2016). The product is a 0.25° x 0.25° global daily sea 219 

surface temperature (SST) data set on a regular grid. Noting that adult sandeel are bound to specific banks 220 
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(Christensen et al., 2008), we produced daily average temperatures over the banks in each stock area, and 221 

then averaged temporally over quarters as follows: P3 and P4 represents the temperature anomalies 222 

experienced by the adult sandeel from July to December before and during spawning (i.e. the 223 

temperatures experienced by the spawners just before spawning). Q1, Q2, Q3 and Q4 are SST anomalies 224 

experienced during the egg, larval and juvenile stages from January to December for a given cohort. All 225 

extracted temperatures were converted to anomalies from the average (climatology) over the complete 226 

SST time series period (1983 to 2020) prior to use in modelling. 227 

Models 228 

Here we use generalised additive models (GAM) as the basis for generating predictions, with model 229 

variable selection based on a multi-model inference approach. An advantage of the GAM approach is it’s 230 

semi-parametric nature that allows for arbitrary but smooth responses. We exploited this feature to 231 

incorporated a cohort-based time-varying smoother to allow for changes in the underlying productivity 232 

(e.g. due to unquantified variables). This approach allows non-stationarity and systematic shifts in 233 

recruitment patterns that would otherwise not be accounted for. For in-depth model descriptions, see 234 

supplementary methods. 235 

The total of 11 candidate variables (Table 1) give a total of 2048 possible combinations that could be 236 

considered. However, in order to minimize risk of overfitting due to both collinearity between model 237 

parameters and the short time-series, predictors are split into three groups (as shown in Table 1) based 238 

on an exploratory analysis of collinearity (i.e. environmental, demographic and other predictors). 239 

Models in the ensemble that incorporated more than one variable in a given group were excluded, 240 

giving a total of 819 candidate model structures to be considered.  241 

Following the retrospective-forecasting and time-blocking approach proposed in this framework, (Figure 242 

1), models were first trained on all data up to a cut-off point and the small-sample Aikaike Information 243 
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Criteria (AICc) calculated and converted to model weights (Anderson, 2008). Each model was then used 244 

to predict the distribution of expected recruitment values for each cohort in the second, verification 245 

block. The individual model posterior predictions were then combined into an ensemble predictive 246 

distribution, with the contribution of each model to the ensemble prediction being determined by the 247 

AICc weights. Probabilistic categories (i.e. high, medium and low recruitment) and the expected value 248 

(mean across the distribution) were then generated from this ensemble predictive distribution. This 249 

process was repeated by moving the cut-off point (forecast issue date) forwards by one year, creating a 250 

forecast various lead times (Figure 1b). 251 

We evaluated forecast issue dates from 2007-2020, giving a total of 14 forecasts to evaluate: earlier 252 

first-forecast dates struck problems with model stability due to the short time series in area 4 (starting 253 

from 1993). We focused on the first forecast (one cohort ahead) here, as this is the most relevant to 254 

both the management of the stock and to the associated fishing industry. 255 

  256 
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Table 1 List of all variables considered and the rationale behind.  The parameterisation of each variable in 257 

the model is also shown, with s() indicates the use of a spline-smoother and other terms indicating the 258 

incorporation of that term as a linear response term. 259 

Variable Description Rationale Parameterisation 

Demographic explanatory variables 

SSB Spawning stock biomass Adult biomass that determines 

amount of eggs spawned 

s(log(SSB)) 

N1 Number of 1-year olds Number of individuals at age 1 

inducing a density dependence 

log(N1) 

SumN Number of individuals Entire sandeel population, 

inducing density dependence 

log(SumN) 

TSB Total stock biomass Combination of all of the above log(TSB) 

Enviromental explanatory variables 

P3  Jul-Sep temperatures Temperatures experienced by 

the adults prior to spawning 

P3 

P4 Oct-Dec temperatures Temperatures experienced by 

the adults prior to / during 

spawning 

P4 

Q1 Jan-Mar temperatures Temperature experienced during 

egg development 

Q1 

Q2 Apr-Jun temperature Temperature experienced by 

larvae during pelagic drift phase 

Q2 

Q3 Jul-Sep temperature Temperature experienced by 

post-settlement juveniles 

Q3 

Q4 Oct-Dec temperature Temperature experienced by 

post-settlement juveniles 

Q4 

Other explanatory variables 

Cohort Cohort year Included to allow time-variation 

in the mean productivity of the 

stock due to systematic shifts in 

other unquantified variables 

s(Cohort) 

 260 
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Skill metrics 261 

Multiple performance metrics are used to assess the retrospective forecasts (Table 2), including both 262 

continuous and categorical skill evaluations (Stow et al., 2009; Jolliffe and Stephenson, 2012; Brun et al., 263 

2016).  Continuous skill uses the mean prediction for a root-mean-square error (RMSE) analysis, giving 264 

indications of the accuracy of the forecast. Continuous forecasts can use the mean-squared-error skill 265 

score (MSESS) to directly compare the forecast with a reference forecast. The categorical forecasts (high, 266 

medium and low) are analysed using the hit rate (H), false alarm rate (F) and true skill score (TSS). Using a 267 

combination will quantify both the accuracy of the forecast and forecast performance in each tercile 268 

(Murphy, 1969).  269 

Reference forecasts were selected according to current stock assessment practices: in this way, it was 270 

immediately apparent if the forecast outperforms existing procedures. For the sandeel, the official ICES 271 

sandeel advice uses either the 10-years moving geometric mean (Area 2r and 4) or the geometric mean 272 

of the full time series (Area 1r and 3r) (ICES, 2018). These models are selected as reference forecasts in 273 

the MSESS. The skill score ranges from negative infinity to 1, effectively comparing the performance gains 274 

from using a given forecast compared to the reference. For categorical forecasts, the reference forecast 275 

is selected to be random guessing (33% correct) baseline, both for True Skill Score (TSS) and Ranked 276 

Probability Skill Score (RPSS).  277 

  278 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.05.451182doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451182
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2 Performancel metrics used to evaluate the skill of the forecast system. These values are calculated 279 

over all retrospective forecasts at a given lead time. Continuous skill evaluation is also performed for 280 

reference forecasts, while the categorical and binary forecast evaluation are only calculated for 281 

probabilistic forecasts (Murphy, 1969). MSE contains the mean of the difference between the forecasted 282 

(F) and observed (O). The hit rate (H) consists of the proportion of correct forecasts (i.e. true positives (TP) 283 

and true negatives (TN)), while false alarm rate (F) is the proportion of incorrect forecasts (i.e. false 284 

positives (FP) and false negatives (FN)).  285 

Name of Forecast Quality Measure Definition Range Application 

Mean square error (MSE) 1

𝑛
∑ (𝐹𝑖 − 𝑂𝑖)

𝑛

𝑖=1
 

[0,inf] Cont. 

Mean square error skill score 

(MSESS) 
1 −

𝑀𝑆𝐸

𝑀𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

[-inf,1] Cont. 

Root-mean-square error (RMSE) √𝑀𝑆𝐸 [0,inf] Cont. 

Proportion correct / Hit rate 
𝐻 =

𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁) + (𝐹𝑃 + 𝐹𝑁)
 

[0,1] Cat. 

False alarm rate 
𝐹 =

𝐹𝑃 + 𝐹𝑁

(𝑇𝑃 + 𝑇𝑁) + (𝐹𝑃 + 𝐹𝑁)
 

[0,1] Cat. 

True Skill Score (TSS) 𝑇𝑆𝑆 = 𝐻 − 𝐹 [-1,1] Cat. 

 286 

Table 3 a) Confusion matrix generated from the retrospective forecasts at a given lead. Constructed from 287 

the sum of observed positives (event occurred) and observed negatives (event didn’t occur) with 288 

corresponding predicted positives (predict event occurred) and predictive negatives (predicted event not 289 

to occur). This results in a matrix of true positive (TP), false positives (FP), false negatives (FN) and true 290 

negatives (TN). For recruitment predictions, a TP is when the forecasting system correctly predicts the 291 

observed tercile, while a FP is when the system predicts a given tercile, which is not observed. For negative 292 

events this is reversed, i.e. FN the tercile is observed while the forecast system doesn’t predict it and TN is 293 

when the tercile is not observed and the system doesn’t predict it.  b) Cost matrix used to calculate the 294 

value of the forecast system. Here a cost (C) is associated with a precaution and a loss is associated with 295 

not taking the precaution and the event occurring. 296 

  297 

a) Contingency matrix  b) Cost matrix 

 Observed P Observed N   Event occurs Event does not 
occur 

Predict P TP FP  Precaution 
taken 

C C 

Predict N FN TN  Precaution 
not taken 

L 0 
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Forecast value 298 

We assess the value of the forecasts using a Richardson cost-loss decision model (Richardson, 2000). 299 

Simple economic models, as used here, are widely used in the climate services sector (Pope et al., 2019) 300 

to quantify value of e.g. seasonal forecast systems, and provide an intuitive metric for users (Murphy, 301 

1976b). Briefly, the model considers the economic impacts of a particular event that is being forecast 302 

(e.g. poor recruitment), and the loss (L) that the user could potentially incur. However, the user also has 303 

the ability to avert these losses by implementing precautionary mitigation actions (e.g. based on a 304 

forecast), but doing so also incurs a cost (C) (e.g. mothballing processing plants). These two dimensions 305 

(i.e. whether the event occurs, and whether the user takes a precaution) each have two outcomes, and 306 

therefore form a 2x2 cost matrix (Jolliffe & Stephenson, 2012, see Table 3b). Combining this set of costs 307 

with the properties of the forecast system characterised by the contingency matrix (Table 3a) allows the 308 

expected expense over the long-term (E) to be calculated when the forecast is always (Eforecast) or never 309 

(Ereference) followed. The value (V) of the realised forecast system can then be calculated relative to a 310 

perfect forecast system as :  311 

 𝑉 =
𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝐸𝑝𝑒𝑟𝑓𝑒𝑐𝑡
  ( 1 ) 312 

The value of the forecast system, V, is expressed as a non-dimensional number less than 1 and varies as a 313 

function of the cost-loss ratio (C/L) of a given user (Richardson, 2000, see eq. 1).  314 

We necessarily extend this analysis to account for the (relatively) small sample size associated with our 315 

set of retrospective forecasts and therefore estimate the uncertainties in the value. We model the 316 

retrospective contingency table (Table 3a) using a Bayesian multinomial model implemented in Stan 317 

(Stan Development Team, 2020) to estimate the vector of true probabilities 𝒑 = {𝑝𝑇𝑃, 𝑝𝐹𝑃, 𝑝𝐹𝑁 , 𝑝𝑇𝑁} of 318 

each quadrant of the contingency table.  The posterior predictive distribution of 𝒑  was then sampled 319 
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4000 times and used to construct a corresponding large set of contingency tables and therefore the 320 

statistical distribution of the forecast system value, V.  321 

Results  322 

Assessment of the predictions is presented at a forecast lead of one cohort beyond the final year of the 323 

assessment, mimicking potential operational usage in these stocks. We find that the stocks in area 1r and 324 

2r have the highest continuous forecast accuracy, while areas 3r and 4 show higher RMSEs (Figure 3a): 325 

this dichotomy closely parallels the lengths of the time series of each area (areas 3r and 4 being 326 

appreciably shorter) and we hypothesis that the reduced amount of training data may limit the forecast 327 

skill. Furthermore, the assessment of area 1r is widely perceived as being the most reliable of the four: 328 

the poor performance in areas 3 and 4 in particular may be due to the poor quality of the assessment as 329 

much as the poor quality of the forecast. The portfolio forecast, on the other hand, has the highest overall 330 

accuracy, showing that the aggregation of predictions can lower the RMSE, highlighting the smoothing 331 

effect associated with aggregating noisy data sets.  332 

Comparing our forecasts against the existing models used in the assessment of this stock (geometric 333 

mean) places their skill in context. In management area 1r, the continuous forecast accuracy is better than 334 

these reference models (Figure 3a), giving a positive mean-squared error skill score (MSESS) (Figure 3b). 335 

The performance of Area 2r is on a par with the reference model, while area 3r and 4 both show a negative 336 

MSESS at lead 1, indicating that the forecast model ensemble would not be an improvement over the 337 

geometric mean reference model when used as a continuous forecast.  338 
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 339 

Figure 3 Recruitment forecasts outperform reference forecasts in some cases a) Root-mean-squared 340 

error of the different management areas and the portfolio forecast at lead 1. Area 1r and 2r show highest 341 

accuracy of individual forecasts, while the portfolio is the overall most accurate, indicating the presence 342 

of the portfolio effect. Stars show the reference geometric mean RMSE for the individual management 343 

areas. b) Mean-squared error skill score of the individual forecast products for lead 1. Official recruitment 344 

prediction model is used as a reference model. Here area 1r and 2r shows better or equal performance to 345 

the reference models, while area 3 and 4 has a negative skill score. c) Hit rate of the different management 346 

areas indicating the percentage of correct retrospective forecasts at lead 1. Dashed line indicates the 95th 347 

percentile level of the random guessing reference forecast. Area 1r are significantly better than random 348 

guessing at 57% hit rate, while area 2r are borderline significant with 50% hitrate. Area 3r, 4 and the 349 

portfolio shows large drop-offs in hit rate with hit rates below 30%. Stars show the reference geometric 350 

mean hit rate. 351 
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Figure 4 Categorical recruitment forecasts show skill in some areas. Model skill at lead 1 is represented 353 

as the True (Peirce) Skill Score (TSS), which ranges between +1 and -1, and has a value of 1 for perfect skill, 354 

and 0 for random guessing (black dashed line). Negative values indicates perverse forecast. The 95% 355 

confidence interval for the estimated skill score are shown as error bars on each of the points. Recruitment 356 

stocks are shown, with shapes indicating the corresponding recruitment tercile. A positive TSS is seen for 357 

all recruitment terciles in area 1r, while all other models shows utility close to or worse than random 358 

guessing.  359 

  360 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.05.451182doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451182
http://creativecommons.org/licenses/by-nc-nd/4.0/


The categorical performance of the forecast models is also broadly similar. Hit rate metrics (how often the 361 

system correctly forecasts high, medium or low recruitment) also shows best results in management area 362 

1r, with 57% correct (Figure 3c), outperforming the outperforming expectd 33% correct associated with 363 

the random guessing of terciles (p=0.02, one-tailed test). Area 2r sees a hit rate of 50% correct (p=0.06, 364 

one-tailed test), significant at the 90% level. A large drop off in hit rate is seen in area 3r and 4 (respectively 365 

at 21% and 28%), where performance is not significantly better than random guessing (p=0.74, and 366 

p=0.52, one-tailed tests). The portfolio categorical forecast, on the other hand, performs poorly and is not 367 

significantly better than random guessing at a 21% proportion correct (p=0.74, one-tailed test): while 368 

aggregating  improves the performance of continunous forecasts, it clearly deteriorates categorical 369 

forecasts. 370 

Further insight into the forecast system can be gained by examining the skill of predicting individual 371 

terciles. The true-skill score (TSS) metric combines the specificity (true-positive rate) with the sensitivity 372 

(true-negative rate) for a categorical forecast and is applied here to each tercile in turn. The TSS  indicates 373 

area 1r being the only management area where the model can reliably differentiate all three categories 374 

(Figure 4), consistently outperforming random guessing (i.e. where TSS=0). Most other areas do not show 375 

a significant ability to differentiate, either due to the small sample size or poor model skill. For example, 376 

area 2r’s TSS is not significantly different from zero for all terciles, in part due to the relatively low 377 

recruitment seen in the stock in recent years, affecting the ability of the TSS metric to quantify the forecast 378 

skill. Areas 3r and 4 have negative or zero skill scores in all categories, likely due to the aforementioned 379 

poor quality of these assessments propagating into these forecasts and resulting in a wide prediction 380 

distribution. The portfolio forecast shows similar TSS values to area 2r, with no categories reaching levels 381 

where the system is able to correctly distinguishing between terciles.  382 

We assessed the value of the forecast for all areas . The cost-loss decision model for Area 1r (Figure 5) 383 

shows positive values in all forecast categories, with especially the low recruitment prediction showing 384 
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the highest value over a broad range of cost/loss ratios (Figure 5a). All categories peak at a cost-loss 385 

ratio of 0.33, as is expected from theoretical analyses of this model (Jolliffe and Stephenson, 2012). We 386 

account for the small sample size and propagate the uncertainty that it creates into the forecast value 387 

by estimating  the probability of a positive expected value for a given cost/loss ratio (Figure 5b): this 388 

metric provides decision makers with an indicator when using the forecast will lead to a positive 389 

economic return. Here the peak is still seen at a cost-loss ratio of 0.33, where all categories have above 390 

65% probability of a positive expected long-term value. Following the low recruitment forecast for this 391 

cost-loss ratio (i.e. 0.33) will result in a 96% probability of positive value from the forecast, but 392 

probabilities above 50% are also seen across a wide range of cost-loss ratios. While area 2r, 3r and 4 393 

generally can’t provide the same levels of value, area 2r could prove valuable when following the high 394 

forecast (Figure S3).  395 
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Figure 5 Positive economic value is seen in area 1r recruitment forecasts. Long-term value of a cost-loss 396 

decision model in area 1r, simulated from a multinomial confusion matrix model. a) Tercile divided value 397 

given cost-loss ratios. Solid line indicates zero value. Positive value is seen in all terciles, peaking at a cost-398 

loss ratio of 0.33. Most value can be gained by following the low tercile forecast, which corresponds with 399 

the highest observed TSS.  b) Tercile divided probability of a positive expected value. Calculated from a 400 

Bayesian posterior distribution, indicating the probability of drawing a positive value at a given cost-loss 401 

ratio. Peak probability is seen at cost-loss ratio of 0.33, where all terciles shows above 65% probability of 402 

a positive expected value. 403 
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Discussion 405 

Here we present a framework for robustly assessing the skill and value of recruitment predictions in a way 406 

that is relevant to their use in an operational setting. The case study that we have examined, for four 407 

sandeel stocks in the North Sea, illustrates several important conceptual points that deserve particular 408 

attention. 409 

Firstly, we show the importance of assessing a forecast system with multiple metrics. While in-sample 410 

performance and explanatory metrics are good for finding correlations (and thereby highlighting possible 411 

causality), the assessment of predictive skill is quite different and should primarily be shaped by the needs 412 

of the forecast user. For example, we identify an overall high forecast accuracy in area 2 (RMSE in Figure 413 

3), but the ability to distinguish between the two lower terciles is poor (Figure 4). Stock assessors may 414 

focus on the MSESS as a criteria for uptake, while industry might be more interested in performance in a 415 

specific category (e.g. ability to forecast poor year classes) or long-term economic value. Furthermore, the 416 

value of a forecast to users within the same sector (e.g. two different fish processing plants) may differ 417 

due to differences in their underlying risk profile (i.e. cost-loss ratio) such that while the forecast system 418 

may be advantageous for one user, it may not be of use to another. Understanding the decision-making 419 

needs of the user is therefore essential to the production of a good forecast (Murphy, 1993; Payne et al., 420 

2017). 421 

While the application of the cost-loss model to estimate forecast value has a clear interpretation in a 422 

commercial context, it is less clear how relevant this approach is to fisheries management. Here, cost-loss 423 

decision models encapsulate both the costs and losses associated with correctly and incorrectly 424 

forecasting recruitment. These ideas can be relevant to fisheries management, as the managers can use 425 

this knowledge as the basis of the forecast evaluation, assigning value on e.g. true positives versus false 426 

positives. This allows managers and users to understand how the forecast can be incorporated, and how 427 
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forecasts can and should be used in the management of a given stock. While not an economic gain, the 428 

value metric of a forecast can be used to assess and manage stocks sustainably, providing the managers 429 

with the tools to properly assess how to incorporate forecasts into decision making.Our demonstration of 430 

the framework here is based on the use of recruitment estimates directly from the stock assessment, as 431 

is still common in the field. It is nevertheless important to remember that these data are estimates that 432 

are also uncertain (Brooks and Deroba, 2015). The framework presented here has the ability, however, 433 

incorporate a more robust treatment of such uncertainties. For example, uncertainty estimates (e.g. in 434 

recruitment) can be incorporated directly into forecast model if desired. Retrospective biases in the stock 435 

assessment incorporated into the model fitting procedure by e.g. fitting the forecast model to stock-436 

assessment outputs based on a model up to 2007, and then predicting forward in time from there.  While 437 

such an approach would be idealogically cleaner, it was not possible here due to technical challenges in 438 

producing a sufficient number of retrospective assessments for these stocks. A further extension would 439 

be to incorporate the recruitment forecast model directly into the stock assessment model, thereby 440 

making a seamless assessment and recruitment prediction system. Regardless of the approach, the 441 

framework presented can adapt to both the technical limitations of the system being studied, and 442 

changing norms in the approach to this issue. 443 

Finally, our results for North Sea sandeel show that our understanding of recruitment predictability needs 444 

to be re-assessed. Contrary to the wide-spread belief that recruitment can’t be forecast, we have shown 445 

in a setting that directly mirrors operational useage that skilful and valuable recruitment forecasts can be 446 

made. Shifting the way that we assessment recruitment skill from an explanatory to predictive setting 447 

greatly increases the confidence in, and transparency of, these results, and paves the way for their direct 448 

up-take in decision making. Furthermore, taking the next step of assessing the value of these forecasts 449 

gives a more nuanced view that is directly relevant to decision-makers, particularly in the commercial 450 
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sector. These results therefore open the way for a new paradigm in addressing this long-running, but 451 

fundamental question in fisheries management. 452 
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