Multi-stock WHAM and configuration for black sea bass

MAFMC SSC Meeting 14 May 2024

Tim Miller Northeast Fisheries Science Center

Outline

- New features of multi-stock, multi-region version of WHAM
- Generalizing from univariate to multivariate abundance (multi-state)
- Ways movement, initial numbers at age, and fishing mortality are parameterized
- Calculating SPR-based biological reference points
- Projection options
- Configuring multi-stock WHAM for black sea bass base model.

New features of multi-stock, multi-region WHAM

- stock-specific abundance at age and by region
- user-defined intervals within years
- effects of environmental covariates on mortality rates by stock, region, and age
- effects of environmental covariates on recruitment by stock
- variation in movement rates by stock, region-to-region, season, age, and year
- effects of environmental covariates on movement rates by stock, region-to-region, season, and age
- mortality and movement modeled sequentially or simultaneously
- stock-specific stock-recruitment models
- priors for movement rates
- seasonal operation of fleets
- more options for initial abundance at age
- options for weighting of stock-specific SSB/R for global SPR-based reference points

Abundance transitions: Baranov

$$N_{L,t+\delta,a}=N_{t,a}S(t,\delta,a)=N_{t,a}e^{-Z_{t,a}a}$$

 $Z_{t,a}\delta \qquad \text{Numbers surviving from} \\ \text{time } t \text{ to } t+\delta$

$$N_{C,t+\delta}=N_{t,a}H(t,\delta,a)=N_trac{F_{t,a}}{Z_{t,a}}\Big(1-e^{-Z_{t,a}\delta}\Big) egin{array}{c} {\sf Numbers\ captured}\ {\sf between\ times\ t\ and\ t+\delta} \end{array}$$

 $N_{K,t+\delta} = N_{t,a}D(t,\delta,a) = N_t rac{M_{t,a}}{Z_{t,a}} \Big(1-e^{-Z_{t,a}\delta}\Big)$ Numbers dead due to M between times t and t+ δ

Abundance transitions: vector-matrix form

$$\mathbf{N}_{t,a} = (N'_{L,t,a}, N'_{C,t,a}, N'_{K,t,a})'$$

Numbers in each state at time t

$$\mathbf{P}_{t,\delta,a} = egin{bmatrix} S(t,\delta,a) & H(t,\delta,a) & D(t,\delta,a) \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 Probability Transition Matrix over interval $oldsymbol{\delta}$

 $\mathbf{N}_{t+\delta,a} = \mathbf{P}_{t,\delta,a}' \mathbf{N}_{t,a}$

Numbers in each state at time $t \cdot \delta$

 $\mathbf{P}_{t,\delta_1+\delta_2,a}=\mathbf{P}_{t,\delta_1,a}\mathbf{P}_{t,\delta_2,a}$

Probability Transition Matrix over interval $\delta_1 + \delta_2$

Multiple regions

$$\mathbf{P}_{t,\delta,a} = egin{bmatrix} \mathbf{O}(t,\delta,a) & \mathbf{H}(t,\delta,a) & \mathbf{D}(t,\delta,a) \ 0 & \mathbf{I}_H & 0 \ 0 & 0 & \mathbf{I}_D \end{bmatrix} \ \mathbf{O}(t,\delta,a) = egin{bmatrix} O_{1,1}(t,\delta,a) & \cdots & O_{1,n_R}(t,\delta,a) \ dots & \ddots & dots \ O_{n_R,1}(t,\delta,a) & \cdots & O_{n_R,n_R}(t,\delta,a) \end{bmatrix} \ \mathbf{H}(t,\delta,a) = egin{bmatrix} H_{1,1}(t,\delta,a) & \cdots & H_{1,n_F}(t,\delta,a) \ dots & \ddots & dots \ H_{n_R,1}(t,\delta,a) & \cdots & H_{n_R,n_F}(t,\delta,a) \end{bmatrix}$$

Probability Transition Matrix over interval $\boldsymbol{\delta}$

Probabilities of survival and moving/staying in each region over interval δ

Probabilities of capture by each fleet over interval $\boldsymbol{\delta}$

 $\mathbf{D}(t, \delta, a)$ Probabilities of natural mortality over interval $\boldsymbol{\delta}$

Multiple regions

- Multi-stock WHAM currently assumes each fleet operates in a single region
- Multi-stock WHAM can assume survival and movement processes are sequential or simultaneous within a seasonal interval.
 - When sequential, survival occurs over the interval and movement is assumed to happen instantly at the end of the interval

$$\mathbf{O}(t,\delta,a) = \mathbf{S}(t,\delta,a) oldsymbol{\mu}(t,\delta,a)$$

Multiple regions

• $\mathbf{S}(t, \delta, a)$ is a diagonal matrix of proportions surviving in each region (given they start in that region):

$${f S}(t,\delta,a) = egin{bmatrix} e^{-Z_1(t,\delta,a)} & 0 & \cdots & 0 \ 0 & e^{-Z_2(t,\delta,a)} & \cdots & 0 \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 0 & \cdots & 0 & e^{-Z_R(t,\delta,a)} \end{bmatrix}$$

 μ(t, δ, a) is matrix of probabilities of moving from one region to another or staying (given they start in that region):

$$oldsymbol{\mu}(t,\delta,a) = egin{bmatrix} 1-\sum_{r'
eq 1}\mu_{1
ightarrow r'} & \mu_{1
ightarrow 2} & \cdots & \mu_{1
ightarrow R} \ \mu_{2
ightarrow 1} & 1-\sum_{r'
eq 2}\mu_{2
ightarrow r'} & \cdots & \mu_{2
ightarrow R} \ dots & d$$

Example probability transition matrix

Northern stock, age 5, year 2021

	North	South	North_Commercial	North_Recreational	South_Commercial	South_Recreational	М
North	0.46	0.02	0.10	0.13	0.00	0.00	0.28
South	0.45	0.02	0.07	0.09	0.02	0.07	0.28
North_Commercial	0.00	0.00	1.00	0.00	0.00	0.00	0.00
North_Recreational	0.00	0.00	0.00	1.00	0.00	0.00	0.00
South_Commercial	0.00	0.00	0.00	0.00	1.00	0.00	0.00
South_Recreational	0.00	0.00	0.00	0.00	0.00	1.00	0.00
М	0.00	0.00	0.00	0.00	0.00	0.00	1.00

Movement parameters

- Multi-stock WHAM currently has no likelihood component for tagging observations, but priors can be configured from auxiliary movement parameter estimates.
 - When prior distributions are used, the (mean) movement parameters are random effects with the mean defined by the user-specified fixed effect counterpart and standard deviation.

Initial abundance at age

The options for parameterizing initial numbers at age have been expanded in Multi-stock WHAM:

- age-specific: initial abundance at age are estimated as fixed effects.
- equilibrium: (initial recruitment) and fully-selected F are estimated fixed effects defining equilibrium initial numbers at age.
- iid: initial abundance at age are iid random effects with mean and variance estimated.
- ar1: initial abundance at age are are AR1 random effects with mean, variance and autocorrelation parameter estimated.

Initial abundance at age

Equilibrium assumption:

- Natural mortality and selectivity for fleet-specific fishing mortality at age are the same as those that occur during the first year of the model.
- With the assumption that each stock spawns in 1 region, there is only 1 initial recruitment parameter.
- The equilibrium calculations are essentially the same as those for SSB/R and Y/R calculations.
- For stock *s*, the equilibrium probability matrix of survival to age *a* and being in each region is

$$\mathbf{D}_{s,a}\left(\widetilde{F}
ight) = egin{cases} \prod_{i=0}^{a-1} \mathbf{O}_{s,i}\left(\widetilde{F}
ight) & 1 \leq a < A & \mathbf{O}_0 = \mathbf{I} \ \left[\prod_{i=0}^{a-1} \mathbf{O}_{s,i}\left(\widetilde{F}
ight)
ight] \mathbf{O}_{s,+}\left(\widetilde{F}
ight) & a = A & \mathbf{O}_+ = \left(\mathbf{I} - \mathbf{O}_A
ight)^{-1} \end{cases}$$

$$N_{1,r,a} = N_{1,r} \widetilde{\mathbf{O}}_a(s_r,r)$$

Fishing mortality rates

- Fishing mortality is treated the same as the standard WHAM package
- F at age for each fleet is estimated as the product of fully selected F and selectivity at age
- A fully-selected total F is also reported as the maximum of the total F at age summed across fleets

$$F_{\mathrm{total},a,y} = \sum_{i=1}^{r} F_{f,a,y}$$

 $F_{\mathrm{total},y} = rg \max_{a} F_{\mathrm{total},a,y}$

- But in the multi-stock version these fleets may occur in different regions
 - The magnitude of the total F increases with more regions (that have fishing)
- There are different ways to average across fleets/regions, but the best way is debatable
- Most important is that the representation of F in the model is consistent with that in reference points and projections

SSB and Yield per Recruit

 The matrix of equilibrium spawning stock biomass per recruit for stock s, in region r' (columns) given recruiting in region r (rows) as a function of a fully-selected F is defined as

$$\widetilde{\mathbf{O}}_{s}\left(\widetilde{F}
ight)=\sum_{a=1}^{A}\mathbf{O}_{s,a}\left(\widetilde{F}
ight)\mathbf{O}_{s,a}\left(\widetilde{F},\delta_{s}
ight) ext{diag}\left(\mathbf{f}_{s,a}
ight)$$

- $\mathbf{O}_{s,a}(\widetilde{F}, \delta_s)$ is the matrix of probabilities of surviving and occurring in region r' at age a given starting in region r at age a+delta
- $\mathbf{f}_{s,a}$ is the vector of fecundities (product of weight and maturity) at age a in each region
- The matrix of equilibrium yield per recruit in each fleet (columns) given recruiting in a given region (rows) is calculated as

$$\widetilde{\mathbf{Y}}_{s}\left(\widetilde{F}
ight)=\sum_{a=1}^{A}\mathbf{O}_{s,a}\left(\widetilde{F}
ight)\mathbf{H}_{s,a}\left(\widetilde{F}
ight) ext{diag}\left(\mathbf{c}_{s,a}
ight)$$

- $\mathbf{H}_{s,a}$ is the matrix of probabilities of capture in each fleet given starting in region r
- $\mathbf{c}_{s,a}$ is the vector of catch weight at age for each fleet

Combining SSB per Recruit across stocks

• To find F40, we use a weighted average of stock-specific components of spawning biomass per recruit as a function of fully-selected F:

$$\widetilde{\mathcal{S}}\left(\widetilde{F}
ight) = \sum_{i=1}^{n_S} \omega_i \widetilde{\mathbf{O}}_i \left(\widetilde{F}, r = r(s_i), r' = r(s_i)
ight)$$

weights can be user-specified or as a function of average recruitment for the different stocks:

$$\omega_i = rac{R_i}{\sum_{i=1}^{n_S} \overline{R}_i}$$

• F40 is the value of fully selected F such that:

$$\widetilde{\mathcal{S}}\left({\widetilde{F}}^{*}
ight)=0.4\widetilde{\mathcal{S}}\left({\widetilde{F}}=0
ight)$$

Same Newton methods as the standard WHAM package are used to solve for F40 internally

SSB and Yield at F40

An average recruitment is multiplied with SSB/R and Y/R for stock i

$$\widetilde{ ext{SSB}}_i = \overline{R}_i \widetilde{ extbf{O}}_i \left(\widetilde{F}, r = r(s_i), r' = r(s_i)
ight)$$

• For yield from stock *i* in fleet *f*

$${{\widetilde Y}_{i,f}} = {\overline R_i} {{\widetilde {f Y}}_i}\left({{\widetilde F},r = r({s_i}),f}
ight)$$

• The total yield for fleet *f* is just the sum across stocks

$${\widetilde{Y}}_f = \sum_{i=1}^{n_S} {\widetilde{Y}}_{i,f}$$

• User specifies the years to include for annual recruitment

- All inputs to SSB/R and YPR/R are averaged over last five years for BRPs under prevailing conditions
- FAA is averaged by fleet

	1	2	3	4	5	6	7	8+
North_Commercial	0.01	0.04	0.09	0.17	0.17	0.17	0.17	0.17
North_Recreational	0.01	0.09	0.10	0.15	0.26	0.40	0.56	0.56
South_Commercial	0.00	0.02	0.06	0.07	0.07	0.07	0.07	0.07
South_Recreational	0.03	0.08	0.15	0.21	0.25	0.26	0.26	0.26

 Average fishing mortality at age and fleet is divided by the maximum of the total average FAA:

 1
 2
 3
 4
 5
 6
 7
 8+

 0.05
 0.23
 0.4
 0.61
 0.76
 0.91
 1.07
 1.07

• FAA/1.07 is selectivity at age and fleet:

	1	2	3	4	5	6	7	8+
North_Commercial	0.01	0.04	0.08	0.16	0.16	0.16	0.16	0.16
North_Recreational	0.01	0.08	0.09	0.14	0.25	0.38	0.52	0.52
South_Commercial	0.00	0.02	0.06	0.07	0.07	0.07	0.07	0.07
South_Recreational	0.03	0.07	0.14	0.20	0.23	0.24	0.25	0.25

• Weight at age for SSB and fleets are averaged over last 5 years.

• SSB:

	1	2	3	4	5	6	7	8+
BSB_North	0.11	0.20	0.37	0.54	0.75	0.99	1.19	1.53
BSB_South	0.09	0.19	0.35	0.48	0.63	0.81	0.93	1.50

• Fleets:

	1	2	3	4	5	6	7	8+
North_Commercial	0.07	0.17	0.37	0.52	0.71	0.91	1.11	1.46
North_Recreational	0.11	0.20	0.37	0.54	0.75	0.99	1.19	1.53
South_Commercial	0.10	0.16	0.35	0.48	0.66	0.85	1.05	1.36
South_Recreational	0.09	0.19	0.35	0.48	0.63	0.81	0.93	1.50

• maturity, M, and movement also averaged over last 5 years.

•	maturity:		1	2	3		4	5	6	7	8+								
		BSB_North	0	0.48	0.98	3 1.0	00	1.00	1	1	1								
		BSB_South	0	0.34	0.82	0.9	98 (0.97	1	1	1								
	M:		1	2	3	4	5	6		7	8+			-		-			
		BSB_North	0.4	0.4	0.4	0.4	0.4	0.4	0.	4	0.4								
		BSB_South	0.4	0.4	0.4	0.4	0.4	0.4	0.	4	0.4								
	movement	(Northern d	con	npon	ient)							1	1 2	1 2 3	1 2 3 4	1 2 3 4 5	1 2 3 4 5 6	1 2 3 4 5 6 7	1 2 3 4 5 6 7 8
							No	rth to	Sou	uth	0.01		L 0.01	L 0.01 0.01	L 0.01 0.01 0.01	L 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	L 0.01 0.01 0.01 0.01 0.01 0.01	L 0.01 0.01 0.01 0.01 0.01 0.01 0.0

• F40 = 1.03. Total F40 at age (across all fleets):

1	2	3	4	5	6	7	8+
0.05	0.22	0.39	0.59	0.73	0.88	1.03	1.03

• FAA40 is selectivity at age and fleet x F40:

• Calculates joint uncertainty of status of current F and SSB relative to reference points:

Averaged inputs for per recruit calculations

• Calculates reference points every year using annual inputs instead of last 5 years:

Annual inputs used in per recruit calculations

• Calculates annual status using annual reference points:

Annual inputs used in per recruit calculations

Projections

Multi-WHAM has the same options as the standard WHAM package

- Continues time series models for some random effects:
 - Recruitment
 - Survival/movement transitions
 - Environmental covariates
 - Optional for M, and movement
 - Uncertainty in these estimates grows in projection years moving away from observations
 - Under AR1 model projected random effects converge to the mean of the process
- For other dynamics user specifies years to average (default is the same as that for prevailing BRPs).
- Various options for projected (year-specific) fully-selected F or FAA:
 - Status quo
 - F40 (or some other percentage)
 - Fmsy (if a S-R function is used)
 - user-specified fully-selected F
 - user-specified total Catch (appropriate FAA is calculated internally)

Configuration for BSB

- 2 regions:
 - North
 - South
- 2 stock components:
 - North
 - South
- Model years: 1989 2021
- Ages: 1-8+
- Environmental covariate:
 - Bottom temperature in North (1959-2022)
- Natural mortality = 0.4 all ages, components, regions

Configuration for BSB

- All Jan 1 recruitment for a given stock component only in respective regions
- North fish can only move from south to north in first 5 intervals
- North fish can only move from north to south in last 4 intervals
- Any remaining North fish that are in the south move back to their spawning region at end of interval 5
- All North fish remain in North spawning region until end of interval 7
- Spawning season is only time when whole North population is in spawning region
- South population stays in South.

Configuration for movement (Northern component)

• The movement matrix for each interval of year after spawning:

$$\mathbf{p}_1 = egin{bmatrix} 1-p_1 & p_1 \ 0 & 1 \end{bmatrix}$$

• Each interval of year before spawning:

$$\mathbf{p}_2 = egin{bmatrix} 1 & 0 \ p_2 & 1-p_2 \end{bmatrix}$$

Movement rates from Stock Synthesis model

- The Stock Synthesis model has 2 intervals (6 months each)
- a proportion of the northern component moves to the south in one interval and some proportion move back to the south in the second interval.
- The movement matrices for each of the two intervals are:

$$egin{aligned} \mathbf{P}_1 &= egin{bmatrix} 1 - P_1 & P_1 \ 0 & 1 \end{bmatrix} \ \mathbf{P}_2 &= egin{bmatrix} 1 & 0 \ P_2 & 1 - P_2 \end{bmatrix} \end{aligned}$$

Transforming between SS and WHAM

- Approximate the WHAM movement matrices as the roots of the SS matrices
 - roots defined by the number of WHAM intervals for each SS interval (5 and 4, respectively):
- Given the proportion parameter, the eigen decomposition of the matrices can be used to define the roots

$$\mathbf{P}_{1}^{rac{1}{5}} = \mathbf{V}_{1}\mathbf{D}_{1}^{rac{1}{5}}\mathbf{V}_{1}^{-1}$$
 $\mathbf{P}_{2}^{rac{1}{4}} = \mathbf{V}_{2}\mathbf{D}_{2}^{rac{1}{4}}\mathbf{V}_{2}^{-1}$

Parameterizing the prior distributions

• The actual SS parameter estimates $x_1 = -1.44$ and $x_2 = 1.94$ are transformations of P_1 and P_2 such that

$$P_i=rac{1}{1+2e^{-x_i}}$$

• Multi-WHAM uses an additive logit transformation

$$p_i=rac{1}{1+e^{-y_i}}$$

Parameterizing the prior distributions

Used a parametric bootstrap approach:

- Simulate 1000 values from a normal distribution with mean and standard deviation defined by the SS parameter estimate and standard error
- For each simulated value
 - construct \mathbf{P}_i
 - take the appropriate root,
 - calculated inverse logit for y_i
- calculate the mean and SD of the simulated values
- mean values over simulations did not differ meaningfully from the transformation of the original estimates:
- SD was approximately 0.2 for both parameters.
- distributions for random effects defining the movement parameters configured using the mean and SD from the bootstraps.

Initial abundance at age

- With the movement configuration, northern origin fish (ages 2+) can occur in the southern region on January 1.
- Estimating initial numbers at age as separate parameters can be challenging even in single-stock models.
- To avoid difficulties, we used the equilibrium assumption described previously.
- Two parameters are estimated for each regional stock component: an initial recruitment and an equilibrium full F across all fleets.

Recruitment and survival/movement transitions

- 2DAR1 (age and year) correlated random effects for both the northern and southern components.
- Variance and correlation parameters are different for the northern and southern components.
- Northern component:
 - abundance at age 1 on January 1 (recruitment) is only allowed in the northern region,
 - older individuals may occur in either region on Jan 1 (based on movement description)
 - survival random effects will occur for abundances at age in both regions.
 - Base model assumes very small variance for the transitions in the southern region (approximately SCAA)
 - 2DAR1 models with estimated variance for southern region would not converge (correlation could not be estimated).

Observations

- Aggregate catch: 2 fleets in each region:
 - Commercial (1989-2021)
 - Recreational (1989-2021)
- Aggregate indices: 2 in each region:
 - Spring VAST (1989-2021)
 - Recreational CPA (1989-2021)
- Age composition for all fleets and indices (1989-2021)
- Model-based bottom temperature observation in Northern region (1959-2022)

Age-composition likelihoods

Data component	Age Composition Likelihood
North Commercial	Dirichlet-Multinomial
North Recreational	Logistic-normal (Os as missing)
South Commercial	Logistic-normal (AR1, 0s as missing)
South Recreational	Logistic-normal (AR1, 0s as missing)
North Recreational CPA	Logistic-normal (Os as missing)
North VAST	Dirichlet-Multinomial
South Recreational CPA	Logistic-normal (AR1, 0s as missing)
South VAST	Logistic-normal (AR1, 0s as missing)

Selectivity

Data component	Mean Selectivity model	Random effects configuration
North Commercial	age-specific (flat-topped at ages > 3)	2D-AR1 (age and year)
North Recreational	age-specific (flat-topped at ages > 6)	2D-AR1 (age and year)
South Commercial	logistic	None
South Recreational	logistic	None
North Recreational CPA	age-specific (flat-topped at ages > 1)	AR1 (year)
North VAST	age-specific (flat-topped at ages > 4)	2D-AR1 (age and year)
South Recreational CPA	age-specific (flat-topped at ages > 2)	None
South VAST	age-specific (flat-topped at ages > 1)	None

Uncertainty in Recreational CPA indices

- CVs provided by analyses that generated Rec CPA indices were deemed implausibly small (CVs: 0.02 to 0.06).
- We estimated a scalar of the SD of the log-aggregate Rec CPA indices.
- Estimates of the scalar were usually approximately 5 for the north and the south Rec CPA indices.
- Estimation included in the proposed base model allow more realistic estimates of uncertainty in model output.

Bottom Temperature effects on recruitment

- Included model-based bottom temperature observations in the BSB model.
- Very small uncertainty in observations (SEs: 0.03 to 0.09).
- State-space treatment:
 - Modeled latent covariate as AR1 process

$$X_y \sim N\left(\mu_X(1-
ho_X)+
ho_X X_{y-1},\sigma_X^2
ight)$$

Observations of the latent covariate:

$$x_y \sim N\left(X_y, \sigma_x^2
ight)$$

• Effect of latent covariate on northern recruitment

$$\log R_y = \mu_R + eta X_y + \epsilon_y.$$