Multi-stock WHAM and configuration for black sea bass

MAFMC SSC Meeting
14 May 2024

Tim Miller
Northeast Fisheries Science Center

Outline

- New features of multi-stock, multi-region version of WHAM
- Generalizing from univariate to multivariate abundance (multi-state)
- Ways movement, initial numbers at age, and fishing mortality are parameterized
- Calculating SPR-based biological reference points
- Projection options
- Configuring multi-stock WHAM for black sea bass base model.

New features of multi-stock, multi-region WHAM

- stock-specific abundance at age and by region
- user-defined intervals within years
- effects of environmental covariates on mortality rates by stock, region, and age
- effects of environmental covariates on recruitment by stock
- variation in movement rates by stock, region-to-region, season, age, and year
- effects of environmental covariates on movement rates by stock, region-to-region, season, and age
- mortality and movement modeled sequentially or simultaneously
- stock-specific stock-recruitment models
- priors for movement rates
- seasonal operation of fleets
- more options for initial abundance at age
- options for weighting of stock-specific SSB/R for global SPR-based reference points

Abundance transitions: Baranov

$$
\left.\begin{array}{c}
N_{L, t+\delta, a}=N_{t, a} S(t, \delta, a)=N_{t, a} e^{-Z_{t, a} \delta}
\end{array} \begin{array}{l}
\text { Numbers surviving from } \\
\text { time } t \text { to } t+\delta
\end{array}\right] \begin{aligned}
& N_{C, t+\delta}=N_{t, a} H(t, \delta, a)=N_{t} \frac{F_{t, a}}{Z_{t, a}}\left(1-e^{-Z_{t, a} \delta}\right) \text { Numbers captured } \\
& \text { between times } t \text { and } t+\delta
\end{aligned}
$$

Abundance transitions: vector-matrix form

$\mathbf{N}_{t, a}=\left(N_{L, t, a}^{\prime}, N_{C, t, a}^{\prime}, N_{K, t, a}^{\prime}\right)^{\prime} \quad$ Numbers in each state at time t
$\mathbf{P}_{t, \delta, a}=\left[\begin{array}{ccc}S(t, \delta, a) & H(t, \delta, a) & D(t, \delta, a) \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \begin{gathered}\text { Probability Transition } \\ \text { Matrix over interval } \delta\end{gathered}$
$\mathbf{N}_{t+\delta, a}=\mathbf{P}_{t, \delta, a}^{\prime} \mathbf{N}_{t, a} \quad$ Numbers in each state at time $t^{+} \delta$
$\mathbf{P}_{t, \delta_{1}+\delta_{2}, a}=\mathbf{P}_{t, \delta_{1}, a} \mathbf{P}_{t, \delta_{2}, a} \quad$ Probability Transition Matrix over interval $\boldsymbol{\delta}_{1}{ }^{*} \boldsymbol{\delta}_{2}$

Multiple regions

$$
\begin{aligned}
& \mathbf{P}_{t, \delta, a}=\left[\begin{array}{ccc}
\mathbf{O}(t, \delta, a) & \mathbf{H}(t, \delta, a) & \mathbf{D}(t, \delta, a) \\
0 & \mathbf{I}_{H} & 0 \\
0 & 0 & \mathbf{1}_{D}
\end{array}\right] \quad \begin{array}{l}
\text { Probability Transition } \\
\text { Matrix over interval } \boldsymbol{\delta}
\end{array} \\
& \mathbf{O}(t, \delta, a)=\left[\begin{array}{ccc}
O_{1,1}(t, \delta, a) & \cdots & O_{1, n_{R}}(t, \delta, a) \\
\vdots & \ddots & \vdots \\
O_{n_{R}, 1}(t, \delta, a) & \cdots & O_{n_{R}, n_{R}}(t, \delta, a)
\end{array}\right] \quad \begin{array}{l}
\text { Probabilities of survival and } \\
\text { moving/staying in each } \\
\text { region over interval } \delta
\end{array} \\
& \mathbf{H}(t, \delta, a)=\left[\begin{array}{ccc}
H_{1,1}(t, \delta, a) & \cdots & H_{1, n_{F}}(t, \delta, a) \\
\vdots & \ddots & \vdots \\
H_{n_{R}, 1}(t, \delta, a) & \cdots & H_{n_{R}, n_{F}}(t, \delta, a)
\end{array}\right] \quad \begin{array}{l}
\text { Probabilities of capture by } \\
\text { each fleet over interval } \delta
\end{array} \\
& \mathbf{D}(t, \delta, a) \text { Probabilities of natural } \\
& \text { mortality over interval } \delta
\end{aligned}
$$

Multiple regions

- Multi-stock WHAM currently assumes each fleet operates in a single region
- Multi-stock WHAM can assume survival and movement processes are sequential or simultaneous within a seasonal interval.
- When sequential, survival occurs over the interval and movement is assumed to happen instantly at the end of the interval

$$
\mathbf{O}(t, \delta, a)=\mathbf{S}(t, \delta, a) \boldsymbol{\mu}(t, \delta, a)
$$

Multiple regions

- $\mathbf{S}(t, \delta, a)$ is a diagonal matrix of proportions surviving in each region (given they start in that region):

$$
\mathbf{S}(t, \delta, a)=\left[\begin{array}{cccc}
e^{-Z_{1}(t, \delta, a)} & 0 & \cdots & 0 \\
0 & e^{-Z_{2}(t, \delta, a)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & e^{-Z_{R}(t, \delta, a)}
\end{array}\right]
$$

- $\boldsymbol{\mu}(t, \delta, a)$ is matrix of probabilities of moving from one region to another or staying (given they start in that region):

$$
\boldsymbol{\mu}(t, \delta, a)=\left[\begin{array}{cccc}
1-\sum_{r^{\prime} \neq 1} \mu_{1 \rightarrow r^{\prime}} & \mu_{1 \rightarrow 2} & \cdots & \mu_{1 \rightarrow R} \\
\mu_{2 \rightarrow 1} & 1-\sum_{r^{\prime} \neq 2} \mu_{2 \rightarrow r^{\prime}} & \cdots & \mu_{2 \rightarrow R} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{R \rightarrow 1} & \cdots & \mu_{R \rightarrow R-1} & 1-\sum_{r^{\prime} \neq R} \mu_{R \rightarrow r^{\prime}}
\end{array}\right]
$$

Example probability transition matrix

Northern stock, age 5, year 2021

| | North | South | North_Commercial | North_Recreational | South_Commercial | South_Recreational | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| North | 0.46 | 0.02 | 0.10 | 0.13 | 0.00 | 0.00 | 0.28 |
| South | 0.45 | 0.02 | 0.07 | 0.09 | 0.02 | 0.07 | 0.28 |
| North_Commercial | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| North_Recreational | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| South_Commercial | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| South_Recreational | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| M | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |

Movement parameters

- Multi-stock WHAM currently has no likelihood component for tagging observations, but priors can be configured from auxiliary movement parameter estimates.

■ When prior distributions are used, the (mean) movement parameters are random effects with the mean defined by the user-specified fixed effect counterpart and standard deviation.

Initial abundance at age

The options for parameterizing initial numbers at age have been expanded in Multi-stock WHAM:

- age-specific: initial abundance at age are estimated as fixed effects.
- equilibrium: (initial recruitment) and fully-selected F are estimated fixed effects defining equilibrium initial numbers at age.
- iid: initial abundance at age are iid random effects with mean and variance estimated.
- ar1: initial abundance at age are are AR1 random effects with mean, variance and autocorrelation parameter estimated.

Initial abundance at age

Equilibrium assumption:

- Natural mortality and selectivity for fleet-specific fishing mortality at age are the same as those that occur during the first year of the model.
- With the assumption that each stock spawns in 1 region, there is only 1 initial recruitment parameter.
- The equilibrium calculations are essentially the same as those for $S S B / R$ and Y / R calculations.
- For stock s, the equilibrium probability matrix of survival to age a and being in each region is

$$
\begin{aligned}
& \mathbf{O}_{s, a}(\widetilde{F})= \begin{cases}\prod_{i=0}^{a-1} \mathbf{O}_{s, i}(\widetilde{F}) & 1 \leq a<A \\
{\left[\prod_{i=0}^{a-1} \mathbf{O}_{s, i}(\widetilde{F})\right] \mathbf{O}_{s,+}(\widetilde{F})} & a=A\end{cases} \\
& N_{1, r, a}=\mathbf{O}_{1, r}=\mathbf{I} \\
& \widetilde{\mathbf{O}}_{a}\left(s_{r}, r\right)
\end{aligned}
$$

Fishing mortality rates

- Fishing mortality is treated the same as the standard WHAM package
- F at age for each fleet is estimated as the product of fully selected F and selectivity at age
- A fully-selected total F is also reported as the maximum of the total F at age summed across fleets

$$
\begin{gathered}
F_{\text {total }, a, y}=\sum_{i=1}^{n_{f}} F_{f, a, y} \\
F_{\text {total }, y}=\underset{a}{\arg \max } F_{\text {total }, a, y}
\end{gathered}
$$

- But in the multi-stock version these fleets may occur in different regions
- The magnitude of the total F increases with more regions (that have fishing)
- There are different ways to average across fleets/regions, but the best way is debatable
- Most important is that the representation of F in the model is consistent with that in reference points and projections

SSB and Yield per Recruit

- The matrix of equilibrium spawning stock biomass per recruit for stock s, in region r^{\prime} (columns) given recruiting in region r (rows) as a function of a fully-selected F is defined as

$$
\widetilde{\mathbf{O}}_{s}(\widetilde{F})=\sum_{a=1}^{A} \mathbf{O}_{s, a}(\widetilde{F}) \mathbf{O}_{s, a}\left(\widetilde{F}, \delta_{s}\right) \operatorname{diag}\left(\mathbf{f}_{s, a}\right)
$$

- $\mathbf{O}_{s, a}\left(\widetilde{F}, \delta_{s}\right)$ is the matrix of probabilities of surviving and occurring in region r^{\prime} at age a given starting in region r at age a+delta
- $\mathbf{f}_{s, a}$ is the vector of fecundities (product of weight and maturity) at age a in each region
- The matrix of equilibrium yield per recruit in each fleet (columns) given recruiting in a given region (rows) is calculated as

$$
\widetilde{\mathbf{Y}}_{s}(\widetilde{F})=\sum_{a=1}^{A} \mathbf{O}_{s, a}(\widetilde{F}) \mathbf{H}_{s, a}(\widetilde{F}) \operatorname{diag}\left(\mathbf{c}_{s, a}\right)
$$

- $\mathbf{H}_{s, a}$ is the matrix of probabilities of capture in each fleet given starting in region r
- $\mathbf{c}_{s, a}$ is the vector of catch weight at age for each fleet

Combining SSB per Recruit across stocks

- To find F40, we use a weighted average of stock-specific components of spawning biomass per recruit as a function of fully-selected F:

$$
\widetilde{\mathcal{S}}(\widetilde{F})=\sum_{i=1}^{n_{S}} \omega_{i} \widetilde{\mathbf{O}}_{i}\left(\widetilde{F}, r=r\left(s_{i}\right), r^{\prime}=r\left(s_{i}\right)\right)
$$

- weights can be user-specified or as a function of average recruitment for the different stocks:

$$
\omega_{i}=\frac{\bar{R}_{i}}{\sum_{i=1}^{n_{S}} \bar{R}_{i}}
$$

- F40 is the value of fully selected F such that:

$$
\widetilde{\mathcal{S}}\left(\widetilde{F}^{*}\right)=0.4 \widetilde{\mathcal{S}}(\widetilde{F}=0)
$$

- Same Newton methods as the standard WHAM package are used to solve for F40 internally

SSB and Yield at F40

- An average recruitment is multiplied with SSB/R and Y/R for stock i

$$
\widetilde{\mathrm{SSB}}_{i}=\bar{R}_{i} \widetilde{\mathbf{O}}_{i}\left(\widetilde{F}, r=r\left(s_{i}\right), r^{\prime}=r\left(s_{i}\right)\right)
$$

- For yield from stock i in fleet f

$$
\widetilde{Y}_{i, f}=\bar{R}_{i} \widetilde{\mathbf{Y}}_{i}\left(\widetilde{F}, r=r\left(s_{i}\right), f\right)
$$

- The total yield for fleet f is just the sum across stocks

$$
\widetilde{Y}_{f}=\sum_{i=1}^{n_{S}} \widetilde{Y}_{i, f}
$$

- User specifies the years to include for annual recruitment

BRPs example

- All inputs to SSB/R and YPR/R are averaged over last five years for BRPs under prevailing conditions
- FAA is averaged by fleet

	1	2	3	4	5	6	7	$8+$
North_Commercial	0.01	0.04	0.09	0.17	0.17	0.17	0.17	0.17
North_Recreational	0.01	0.09	0.10	0.15	0.26	0.40	0.56	0.56
South_Commercial	0.00	0.02	0.06	0.07	0.07	0.07	0.07	0.07
South_Recreational	0.03	0.08	0.15	0.21	0.25	0.26	0.26	0.26

BRPs example

- Average fishing mortality at age and fleet is divided by the maximum of the total average FAA:

1	2	3	4	5	6	7	$8+$
0.05	0.23	0.4	0.61	0.76	0.91	1.07	1.07

- FAA/1.07 is selectivity at age and fleet:

	1	2	3	4	5	6	7	$8+$
North_Commercial	0.01	0.04	0.08	0.16	0.16	0.16	0.16	0.16
North_Recreational	0.01	0.08	0.09	0.14	0.25	0.38	0.52	0.52
South_Commercial	0.00	0.02	0.06	0.07	0.07	0.07	0.07	0.07
South_Recreational	0.03	0.07	0.14	0.20	0.23	0.24	0.25	0.25

BRPs example

- Weight at age for SSB and fleets are averaged over last 5 years.
- SSB:

	1	2	3	4	5	6	7
$8+$							
BSB_North	0.11	0.20	0.37	0.54	0.75	0.99	1.19

- Fleets:

	1	2	3	4	5	6	7	$8+$
North_Commercial	0.07	0.17	0.37	0.52	0.71	0.91	1.11	1.46
North_Recreational	0.11	0.20	0.37	0.54	0.75	0.99	1.19	1.53
South_Commercial	0.10	0.16	0.35	0.48	0.66	0.85	1.05	1.36
South_Recreational	0.09	0.19	0.35	0.48	0.63	0.81	0.93	1.50

BRPs example

- maturity, M, and movement also averaged over last 5 years.
- maturity:

	1	2	3	4	5	6	7	$8+$
BSB_North	0	0.48	0.98	1.00	1.00	1	1	1
BSB_South	0	0.34	0.82	0.98	0.97	1	1	1

- $\mathrm{M}:$

	1	2	3	4	5	6	7	$8+$
BSB_North	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
BSB_South	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

- movement (Northern component):

	1	2	3	4	5	6	7	$8+$
North to South	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
South to North	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33

BRPs example

- $\mathrm{F} 40=1.03$. Total F 40 at age (across all fleets):

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.05 | 0.22 | 0.39 | 0.59 | 0.73 | 0.88 | 1.03 | 1.03 |

- FAA40 is selectivity at age and fleet \times F40:

1	2	3	4	5	6	7	$8+$
0.01	0.04	0.09	0.17	0.17	0.17	0.17	0.17
0.01	0.09	0.10	0.15	0.26	0.39	0.54	0.54
0.00	0.02	0.06	0.07	0.07	0.07	0.07	0.07
0.03	0.08	0.15	0.21	0.24	0.25	0.25	0.25

BRPs example

- Calculates joint uncertainty of status of current F and SSB relative to reference points:

Averaged inputs for per recruit calculations

BRPs example

- Calculates reference points every year using annual inputs instead of last 5 years:

BRPs example

- Calculates annual status using annual reference points:

Projections

Multi-WHAM has the same options as the standard WHAM package

- Continues time series models for some random effects:
- Recruitment
- Survival/movement transitions
- Environmental covariates
- Optional for M, and movement
- Uncertainty in these estimates grows in projection years moving away from observations
- Under AR1 model projected random effects converge to the mean of the process
- For other dynamics user specifies years to average (default is the same as that for prevailing BRPs).
- Various options for projected (year-specific) fully-selected F or FAA:
- Status quo
- F40 (or some other percentage)
- Fmsy (if a S-R function is used)
- user-specified fully-selected F
- user-specified total Catch (appropriate FAA is calculated internally)

Configuration for BSB

- 2 regions:
- North
- South
- 2 stock components:
- North
- South
- Model years: 1989-2021
- Ages: 1-8+
- Environmental covariate:

■ Bottom temperature in North (1959-2022)

- Natural mortality = 0.4 all ages, components, regions

Configuration for BSB

- All Jan 1 recruitment for a given stock component only in respective regions
- North fish can only move from south to north in first 5 intervals
- North fish can only move from north to south in last 4 intervals
- Any remaining North fish that are in the south move back to their spawning region at end of interval 5
- All North fish remain in North spawning region until end of interval 7
- Spawning season is only time when whole North population is in spawning region
- South population stays in South.

J	F	M	A	M	J	J	A	S	O	N	D

Monthly survival and movement	$:$Survival and Spawning	$:$	Monthly survival and movement	North population

Configuration for movement (Northern component)

- The movement matrix for each interval of year after spawning:

$$
\mathbf{p}_{1}=\left[\begin{array}{cc}
1-p_{1} & p_{1} \\
0 & 1
\end{array}\right]
$$

- Each interval of year before spawning:

$$
\mathbf{p}_{2}=\left[\begin{array}{cc}
1 & 0 \\
p_{2} & 1-p_{2}
\end{array}\right]
$$

Movement rates from Stock Synthesis model

- The Stock Synthesis model has 2 intervals (6 months each)
- a proportion of the northern component moves to the south in one interval and some proportion move back to the south in the second interval.
- The movement matrices for each of the two intervals are:

$$
\begin{aligned}
& \mathbf{P}_{1}=\left[\begin{array}{cc}
1-P_{1} & P_{1} \\
0 & 1
\end{array}\right] \\
& \mathbf{P}_{2}=\left[\begin{array}{cc}
1 & 0 \\
P_{2} & 1-P_{2}
\end{array}\right]
\end{aligned}
$$

Transforming between SS and WHAM

- Approximate the WHAM movement matrices as the roots of the SS matrices
- roots defined by the number of WHAM intervals for each SS interval (5 and 4, respectively):
- Given the proportion parameter, the eigen decomposition of the matrices can be used to define the roots

$$
\begin{aligned}
& \mathbf{P}_{1}^{\frac{1}{5}}=\mathbf{V}_{1} \mathbf{D}_{1}^{\frac{1}{5}} \mathbf{V}_{1}^{-1} \\
& \mathbf{P}_{2}^{\frac{1}{4}}=\mathbf{V}_{2} \mathbf{D}_{2}^{\frac{1}{4}} \mathbf{V}_{2}^{-1}
\end{aligned}
$$

Parameterizing the prior distributions

- The actual SS parameter estimates $X_{1}=-1.44$ and $x_{2}=1.94$ are transformations of P_{1} and P_{2} such that

$$
P_{i}=\frac{1}{1+2 e^{-x_{i}}}
$$

- Multi-WHAM uses an additive logit transformation

$$
p_{i}=\frac{1}{1+e^{-y_{i}}}
$$

Parameterizing the prior distributions

Used a parametric bootstrap approach:

- Simulate 1000 values from a normal distribution with mean and standard deviation defined by the SS parameter estimate and standard error
- For each simulated value
- construct \mathbf{P}_{i}
- take the appropriate root,
- calculated inverse logit for y_{i}
- calculate the mean and SD of the simulated values
- mean values over simulations did not differ meaningfully from the transformation of the original estimates:
- SD was approximately 0.2 for both parameters.
- distributions for random effects defining the movement parameters configured using the mean and SD from the bootstraps.

Initial abundance at age

- With the movement configuration, northern origin fish (ages 2^{+}) can occur in the southern region on January 1.
- Estimating initial numbers at age as separate parameters can be challenging even in single-stock models.
- To avoid difficulties, we used the equilibrium assumption described previously.
- Two parameters are estimated for each regional stock component: an initial recruitment and an equilibrium full F across all fleets.

Recruitment and survival/movement transitions

- 2DAR1 (age and year) correlated random effects for both the northern and southern components.
- Variance and correlation parameters are different for the northern and southern components.
- Northern component:
- abundance at age 1 on January 1 (recruitment) is only allowed in the northern region,
- older individuals may occur in either region on Jan 1 (based on movement description)
- survival random effects will occur for abundances at age in both regions.
- Base model assumes very small variance for the transitions in the southern region (approximately SCAA)
- 2DAR1 models with estimated variance for southern region would not converge (correlation could not be estimated).

Observations

- Aggregate catch: 2 fleets in each region:
- Commercial (1989-2021)
- Recreational (1989-2021)
- Aggregate indices: 2 in each region:
- Spring VAST (1989-2021)
- Recreational CPA (1989-2021)
- Age composition for all fleets and indices (1989-2021)
- Model-based bottom temperature observation in Northern region (1959-2022)

Age-composition likelihoods

Data component	Age Composition Likelihood
North Commercial	Dirichlet-Multinomial
North Recreational	Logistic-normal (Os as missing)
South Commercial	Logistic-normal (AR1, Os as missing)
South Recreational	Logistic-normal (AR1, Os as missing)
North Recreational CPA	Logistic-normal (Os as missing)
North VAST	Dirichlet-Multinomial
South Recreational CPA	Logistic-normal (AR1, Os as missing)
South VAST	Logistic-normal (AR1, Os as missing)

Selectivity

Data component	Mean Selectivity model	Random effects configuration
North Commercial	age-specific (flat-topped at ages > 3)	2D-AR1 (age and year)
North Recreational	age-specific (flat-topped at ages >6)	2D-AR1 (age and year)
South Commercial	logistic	None
South Recreational	logistic	None
North Recreational CPA	age-specific (flat-topped at ages > 1)	AR1 (year)
North VAST	age-specific (flat-topped at ages >4)	2D-AR1 (age and year)
South Recreational CPA	age-specific (flat-topped at ages > 2)	None
South VAST	age-specific (flat-topped at ages > 1)	None

Uncertainty in Recreational CPA indices

- CVs provided by analyses that generated Rec CPA indices were deemed implausibly small (CVs: 0.02 to 0.06).
- We estimated a scalar of the SD of the log-aggregate Rec CPA indices.
- Estimates of the scalar were usually approximately 5 for the north and the south Rec CPA indices.
- Estimation included in the proposed base model allow more realistic estimates of uncertainty in model output.

Bottom Temperature effects on recruitment

- Included model-based bottom temperature observations in the BSB model.
- Very small uncertainty in observations (SEs: 0.03 to 0.09).
- State-space treatment:
- Modeled latent covariate as AR1 process

$$
X_{y} \sim N\left(\mu_{X}\left(1-\rho_{X}\right)+\rho_{X} X_{y-1}, \sigma_{X}^{2}\right)
$$

- Observations of the latent covariate:

$$
x_{y} \sim N\left(X_{y}, \sigma_{x}^{2}\right)
$$

- Effect of latent covariate on northern recruitment

$$
\log R_{y}=\mu_{R}+\beta X_{y}+\epsilon_{y}
$$

